Sorption of an oil sands naphthenic acid mixture to soils – implication for transport in groundwater and aquatic toxicity

Arash Janfada, John V. Headley, K.M. Peru, and S.L. Barbour

Background - naphthenic acids:

- OSTW naphthenic acids
 - complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids
 - consist of >200 individual compounds.

 $C_n H_{2n+Z} O_2$

 $\boldsymbol{n} \rightarrow$ represents the carbon number

 $\textbf{Z} \rightarrow$ the number of hydrogens lost due to addition of rings

Naphthenic acids (NAs) are:

- Naturally occurring organic compounds found in most petroleum sources
- Occurring at 1 5 mg/L in adjacent (ground and surface) waters in the Alberta oil sands region. (Holowenko et al. 2002)
- Solubilized from bitumen during processing
- Present in tailings pond water at a concentration ranging between 40 - 120 mg/L (Holowenko et al. 2001)

Naphthenic acids (NAs) are:

- Major contributors to acute toxicity of oil sands tailings water
- Acutely toxic to aquatic organisms. Toxic to mammals and other microorganisms (USEPA)
- Individual NAs have unique toxicities
- Not well established which of the many NA species in the mixtures have the greatest toxicity; low molecular weight species are likely candidates

Importance of transport studies:

- Biodegradation of contaminants in soils is controlled by mass transfer processes (Griebe et al. 2000).
- Understanding transport leads to remediation, control, and protection of human water supplies
- Currently, few studies done on the transport properties of OSTW naphthenic acids

Factors governing sorption

- Sorption of non-polar and ionizable compounds such as naphthenic acid are governed by several parameters (Delle Site 2001; Schramm 2003; Fetter 1999)
 - Degree of water solubility
 - Equilibrium constant (k_a) and pKa of the adsorbate
 - pH of the system
 - Mineralogy of sorbent
 - Organic carbon content of sorbent
- These parameters vary considerably in the field both spatially and temporally (Hackbarth 1981; Bachu and Underschultz 1993)

Factors governing sorption (cont.)

- pKa of naphthenic acids varies in the range of 4.71 5.1 (Harve et al 2003) Others give btw. 5-6 (Headley 2002).
- ionizable organic acidic considered 100% deprotonated when the pH is 2 above the pKa (Delle Site 2001)
- Mechanisms of adsorption complex since depending on the pH, naphthenic acids can exist both in neutral and ionized forms
- partitioning to the organic fraction (*f*_{oc}) and as adsorption to mineral surfaces can occur (Delle Site 2001; Fendel 1988).

Factors governing sorption (cont.)

- Surface-solute sorption mechanisms are of three types
 - a) Physical
 - b) Chemical
 - c) Electrostatic
- The degree to which each acts being governed by the aforementioned parameters (Delle Site 2001).
- Surface activity, cation/anion exchange capacities of soils also change with pH of solution (Hyun and Lee 2004; Delle Site 2001).

Scope of the study

- Picked a relevant set of conditions under which adsorption behavior of NAs was analyzed.
- "Representative of field conditions" illusive term since field conditions are variable.

Examples in the oil sands region...

Scope of the study

- McMurray and Grandrapids aquifer/aquitard systems tend to be complex with interwoven beds of sands, shale, and silt (Bachu and Underschultz 1993).
- Salinity of aquifers varies both spatially and temporally in the area and by orders of magnitude higher than that used in this study (Hackbarth 1977; Bachu and Underschultz 1993).
- Bicarbonate has remediating characteristics for naphthenic acids but varies in concentration spatially and temporally (Gervais 2004; Compton and Brown 1994).

Objectives of the study

- 1. Develop an analytical method for NAs in OSTW Mixtures:
- 2. Apply to illustrative case of soils, groundwater and NA source using
 - Soils from the Athabasca oil sands region
 - NAs extracted from the Mildred Lake Mine Tailings water
 - Elevated salinity
- 3. Conduct a preliminary evaluation of impact of following on NA adsorption
 - Elevated salinity
 - Selected species sorption
- Study *not* focused on:
 - Partitioning mechanisms (ex. Hydrophilic/hydrophobic)
 - Recommendation of adsorption isotherms in oil sands.

Materials

- Soil 1 was a mixture of peat and mineral soil that was produced during soil salvage operations.
- Soil 2 was a sandy clay to clay loam mineral mixed with a small amount of peat.
- A 3190mg/L stock solution of the naphthenic acids was obtained by liquid-liquid extraction of 200L of OSTPW.

Properties	Soil No. 1	Soil No. 2
Organic carbon (%)	2.7	1.6
Organic matter (%)	4.7	2.8
Inorganic carbon (%)	0.26	0.23
$Na^+(\mu g/g)$	107	64
Ca ²⁺ (µg/g)	177	98
$Mg^{2+}(\mu g/g)$	37	16
	4	3
CEC (mequiv./100g)	19.4	16.2
рН	7.7	7.7
SAR	1.9	1.6
Moisture (%)	2.3	1.9

Procedures

- The adsorption data was obtained using a modified ASTM batch partitioning method.
- SGW was prepared according to Donahue (1994) as summarized in Table 2. with Sodium Azide added as a microbial inhibitor.

Composition	Concentration (mg/L)	
CaSO_4 (BDH Chemicals, Poole, UK)	1013	
$MgSO_4$ (BDH Chemicals, Toronto, ON)	938	
NaN_3 (BDH Chemicals, Toronto, ON)	525	

- The pH of all solutions was fixed at 8.0 ± 0.4 , and all pH
- Regression analysis was used to determine the confidence intervals of the K_d values (Caulcutt and Boddy 1983).

Procedures

- The concentration/characterization of all solutions was analyzed using a triple quadrupole mass spectrometer with an electrospray (ES) interface operating in the negative-ion mode.(Headley and Peru 2002).
- Both SGW and DI water solutions were subjected to a solid phase extraction procedure to remove matrix interference before any analysis was conducted.

Results: DI water

- Preliminary study of kinetics of the adsorption were conducted and it was concluded that after 48 hour adequate equilibrium conditions had been reached.
- The adsorption coefficients for the mixture of naphthenic acids in DI water were determined to be 1.9 ± 0.2 (ml/g) and 1.3 ± 0.15 (ml/g) for soils 1 and 2 respectively.

Recall – primary difference between the two soils being a near 2fold difference in OC/OM content of soil 1.

Sorption isotherms for NAs on soils 1 and 2 with DI water

Results: SGW

- In the presence of SGW, K_d on soil 1 increased from 1.9 ± 0.2 (ml/g) to 17.8 ± 1.5 (ml/g).
- This is an <u>order of magnitude higher</u> than in the DI water solution.

Sorption isotherms for NAs on soils 1 and 2 with SGW water

Results (cont.)

- In both cases the K_d value for the two soils are significantly different likely resulting from soil 1 having nearly double the OM and f_{oc} than soil 2 (Fetter 1999; Pignatello 2000).
- Salting out is the likely mechanism at play in SGW solution
- The presence of inorganic salts can enhance the adsorption capacity hydrophobic ionizable organic Compounds (Ping and SenGupta 2004; Martins, Jean M.; Mermoud 1998; Horng 2000).

Evidence for selective sorption

- The relative abundance of each of the naphthenic acids was then plotted according to -*Z* family, against time and varying carbon numbers between n=5 and n=37; a different plot was produced for each -*Z* family. (St. John 1998; Holowenko 2001).
- naphthenic acids in carbon No. range ~13 -17 seemed to sorb preferentially; evidenced by their change in fractional abundance
- the fractional abundance of compounds with nearby carbon numbers remains relatively constant.

Relative abundance for Z=-2 family of acids at t=0 and t=48hrs – DI water

- a) Z=-2 family change in fractional abundance of individual species with time, soil 1 in DI water
- b) Z=-2 family change in fractional abundance of individual species with time, soil 2 in DI water

Evidence for selective sorption

- Two sample t-test was applied to the transformed data for each Z family comparing t=0 and t=48 samples
- With samples in SGW solutions it was found for all Z families
 - Carbon No. 5 to 14 did not adsorbed significantly
 - Carbon No. 15 to 24 adsorbed significantly
 - Carbon No. 25 to 37 adsorbed significantly

Relative abundance for Z=-2 family of acids at t=0 and t=48hrs - SGW

- a) Z=-2 family change in fractional abundance of individual species with time, soil 1 in SGW
- b) Z=-2 family change in fractional abundance of individual species with time, soil 2 in SGW

Implications and practical relevance ...

- As the plume becomes more dilute, *K*_d decrease, R, decrease and effective velocity increases to ground water velocity.
- May look like an increase in longitudinal dispersivity but is more complex

Hypothetical Scenario 2

- As plume advances, higher sorption affinity NAs partition out leaving more mobile fraction.
- Mobile fraction likely to be lower molecular weight NAs Toxicity concerns; bioavailability.

Conclusions

- OSTW Naphthenic acids exhibit increase sorption under conditions of high salinity
- The lower molecular weight naphthenic acids experience no significant sorption under saline conditions where naphthenic acids of carbon number 15 to 37 do sorb significantly.

Questions or comments?