PLEASE HOLD THE SALT

Authors

Reed Jackson and Randy Brunatti, AMEC Earth & Environmental

Combined assessment and remediation experience of more than 20 years and 200 sites

 Gary and Maureen Johnston, Cosmic Ventures
 Combined geophysical assessment experience of more than 50 years and 1000 sites

What's the Big Deal?

- Sodium chloride is essential for human and animal biochemistry
- We need salts for deicing and industrial production
- Tastes good on potato chips and peanuts

However

Too much salt causes harm to land and water receptors and human consumers

Natural Salts in Alberta

 Significant salt concentrations in soil and water can be naturally occurring

solonetzic soils in the Southern Prairies
groundwater discharge areas
evaporative concentration
bedrock of marine origin

Naturally Saline Soils Around a Prairie Slough

Salts From Human Actions

- Road deicing in Canada uses 5 million tonnes / year - diffuse impacts
- Transportation yards with outdoor pickled sand storage areas - intense impacts
- Upper Lotsberg Formation mining provides salts for table use, industrial production and creates storage caverns
- Oil and gas drilling and production

Seawater and Produced Water

Source	Chloride (mgL)
Seawater	19,000
Medicine Hat PW	<500
Cold Lake PW	5,000
Redwater PW	65,000
Rainbow Lake PW	120,000

Who Cares About Salt Releases

- <u>General Public</u> perception and visual impacts
- <u>Landowners</u> land use limitations, loss of production, water supply for drinking, livestock water and irrigating
- Regulators protection of environment and the principal of equivalent land use

Regulatory Guidelines & Criteria ■ AENV: Soil and Surface Water Guidelines AB Agriculture: Soil Quality and Salt Tolerance **CCME:** Soil and Water Quality Criteria Env. Canada: Environmental Management of **Road Salts**

Soil Criteria

Conductivity:
2 dS/m topsoil / 3 dS/m subsoil
4 dS/m industrial

SAR
4 agricultural
12 industrial

Chloride: 370 mg/kg B.C. [draft]

Water Criteria

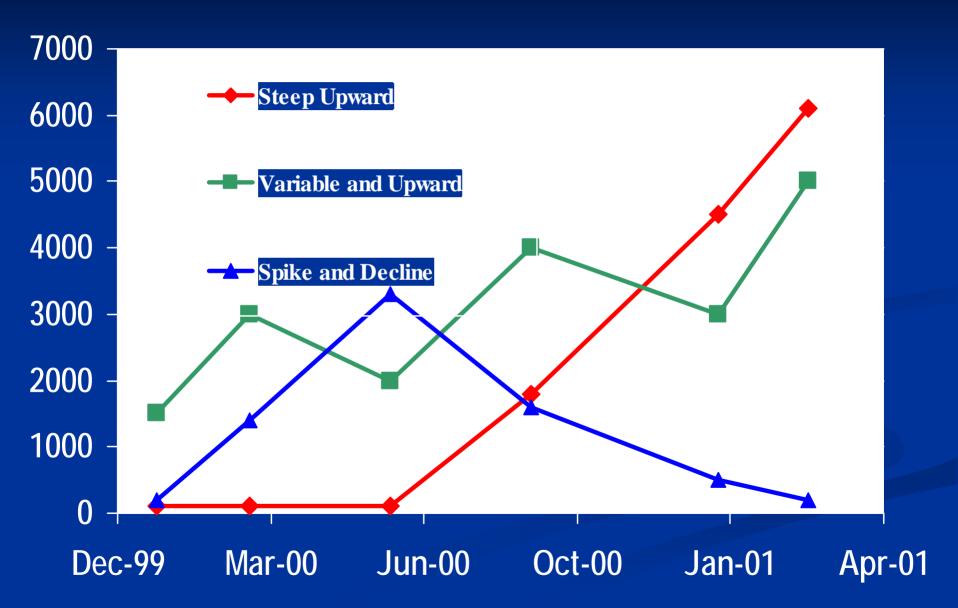
Groundwater Criteria - aesthetic objectives ■ sodium: 200 mg/L ■ chloride: 250 mg/L Surface Water Chloride: ■ 35 mg/L no observed effects - Fathead Minnow ■ 140 mg/L no observed effects - Daphnia ■ 230 mg/L four day average ■ 500 mg/L runoff water release criteria ■ 860 mg/L one hour every three years

Salts Relative to Background

 Naturally saline soils may have limited or no potential to mitigate added salts

Due to sensitive receptors, remediation to close to background may be necessary to restore equivalent land use

Migration of Salts


Overland flow and surface water

 Vertical movement downward in soil – varies with soil texture and permeability

Groundwater

density driven flow and segregationhorizontal flow

Chloride (mg/L) Trends in Groundwater

Adverse Effects

Vegetation stress / death, poor crop yield

Impaired and hardened soil structure

Aquatic ecosystem stress

Poor water quality for human or animal use

Salt Tolerant Plants [EC > 8]

Barley ■ Wheat Bromegrass ■ Alfalfa Spinach Lilac Willow

Salt Sensitive Plants (EC < 2 dS/m)

Timothy Red Clover Peas Raspberry Spruce Aspen Birch

Tools to Delineate Salt Impacts

Historical records - often poor or incomplete
Vegetation stress assessment - seasonal
Soil sampling and analysis
Hydrogeologic investigation with groundwater sampling and analysis

Geophysical tools - EM and / or Resistivity

Stressed Trees

Surficial Salt Crust

Salt Spill Geophysics

Release of salt changes the electrical characteristics of the ground affected

Salt will increase conductivity

Salt will lower resistivity

Background Conductivity

Lower values found:
 mountain glaciated areas
 sands and gravels

Higher values found:
 in clayer continental classic

- in clayey continental glaciated areas
- shale bedrock

naturally saline areas (sulphate rich)

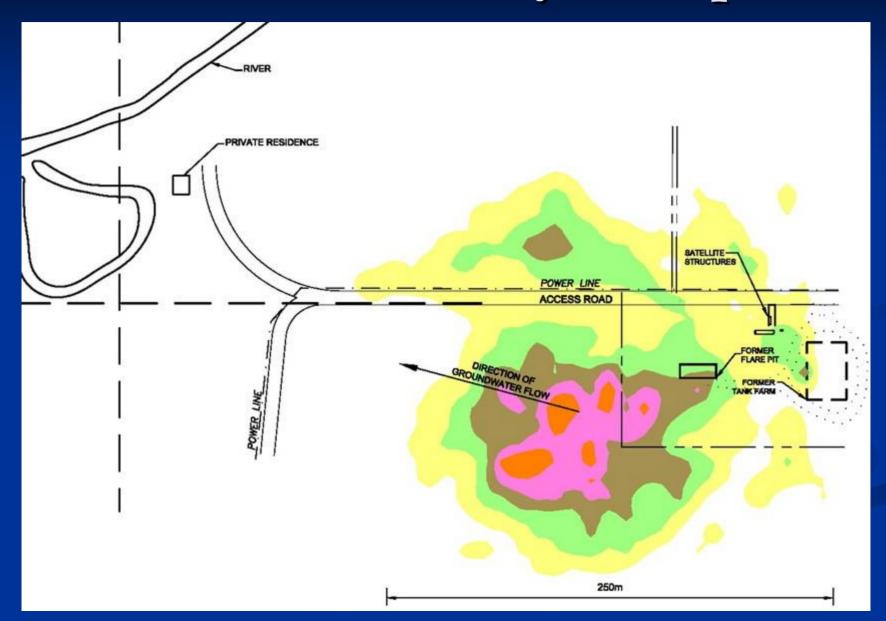
Geophysical Techniques

- Electromagnetic (EM) radio portion
 EM 38 measures to shallow depths
 EM 31 measures to intermediate depths
 deeper measurements are possible with wider coil spacing or inside a borehole/monitor well
- Ground Conductivity Meters or Resistivity Meters

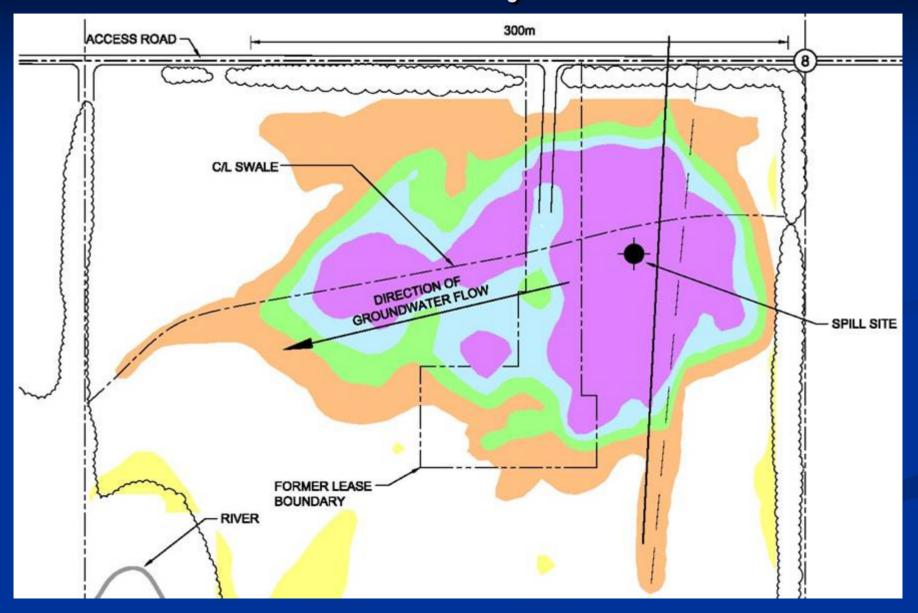
EM 31 Survey

EM Advantages

- Rapid mapping of approximate extent of spill Using EM 38 and 31 provides crude depths Can be used in industrial areas Averaging rotational readings can reduce or eliminate interference Age of spill may be apparent recent spill has sharp edges
 - old spill has diffuse edges


EM Limitations

Must be sufficient contrast to background
Shallow penetration if surface is saline
Depth information is crude
Interference may limit value


e.g. pipeline ROW or under power lines

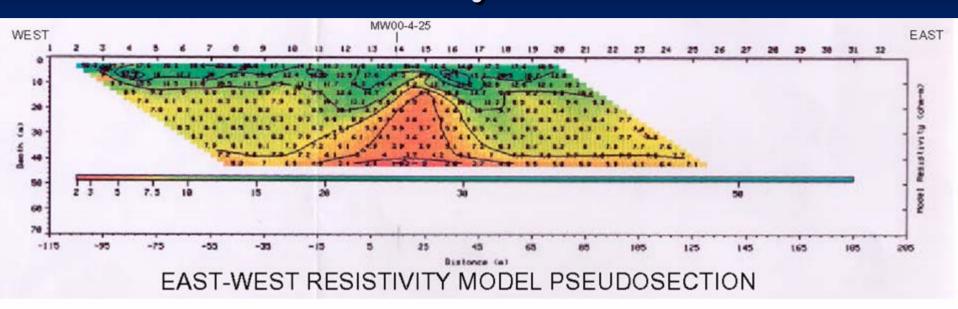
Is not sensitive to thin saline zones

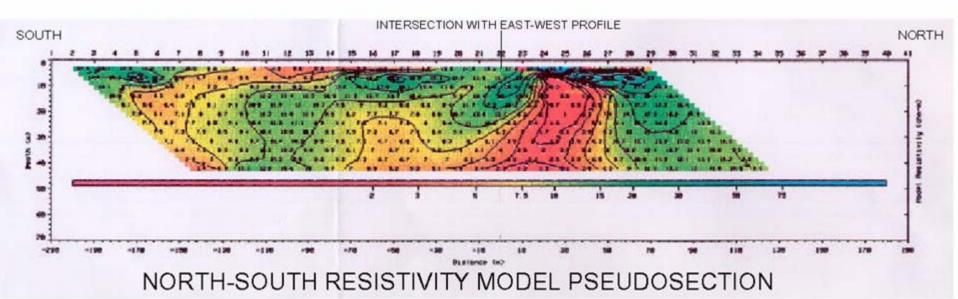
EM 31 Anomaly - Deep

EM 38 Anomaly - Shallow

Resistivity Advantages

- Better depth information
- Sounding provides higher quality depth data as compared to profiling (ERT)
- Can produce 2D and 3D sections
- Near surface conductive layers enhance penetration


Resistivity Limitations


Higher cost to map same area

- Difficult to inject current in hard ground
- Equipment is not intrinsically safe
- Not sensitive to thin layers or slow changes in conductivity with depth

Requires wide areas without interference

Resistivity Profiles

Spill Response - High Value

Contain extent on land with berms or ditches

Recover fluids <u>as soon as possible</u>

Minimize subsequent infiltration

Remove source quickly

Provincial reporting is required

Surface Water

Divert spills away from water bodies

Protect from subsequent runoff

Check for density segregation

Provincial <u>and</u> Federal reporting is required

Dig and Dump

Quickly remove spill affected soil to landfill

Likely cheapest option for highly saline soil

Can use EC and Cl as field delineation tools

Soil Amendments

Deep till and add organic matter to improve permeability

Add calcium to protect clay soil structure
 calcium nitrate for fast action (nitrate risk)
 calcium sulphate (gypsum) for slow release

GW Recovery - Open Trench

Shallow ditching through spill area

Collect saline runoff and flush water

Unless salt mass is small, this is an ineffective method to reach closure for most releases

Shallow Tile Field

Need shallow salts and shallow water table

Parallel rows of perforated tile drain to sump

Plow or dig in tile

Usually seasonal operations

Plowing in Drainage Tile

Linear Interceptor Trench

Deeper salt containment and recovery

Usually installed by backhoe with tie in to sump

Can provide a hydraulic barrier to groundwater flow

Linear Interceptor Trench

Bored Recovery Well

 Effective for deep salt impacts and highly permeable aquifers

Often use bored wells to optimize screen diameter and yield

Year round operations

Bored Recovery Well

Produced Water Equivalents

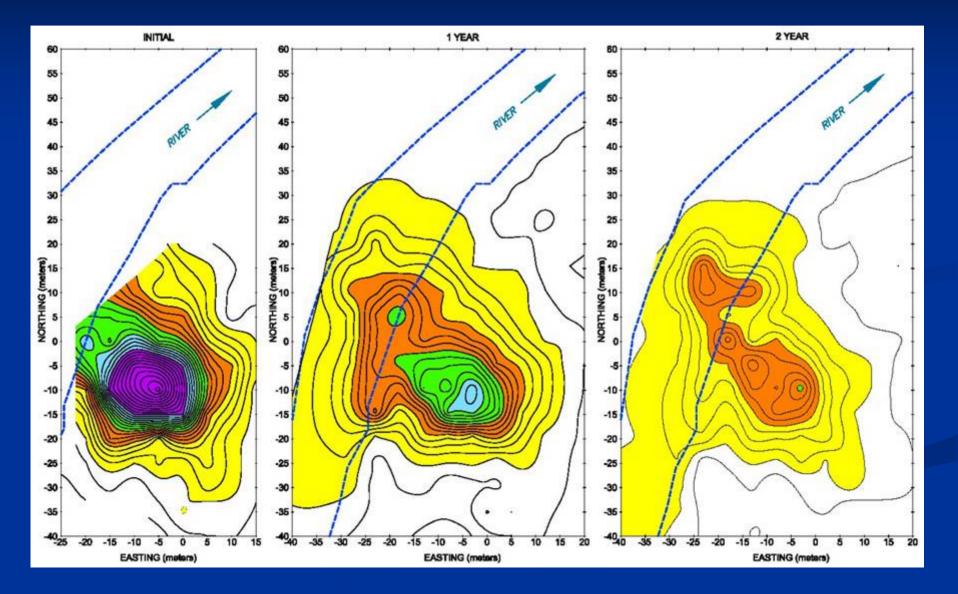
For Oil & Gas Production related releases, salt recovery and system performance can be related back to the produced formation water

Produced water equivalents =

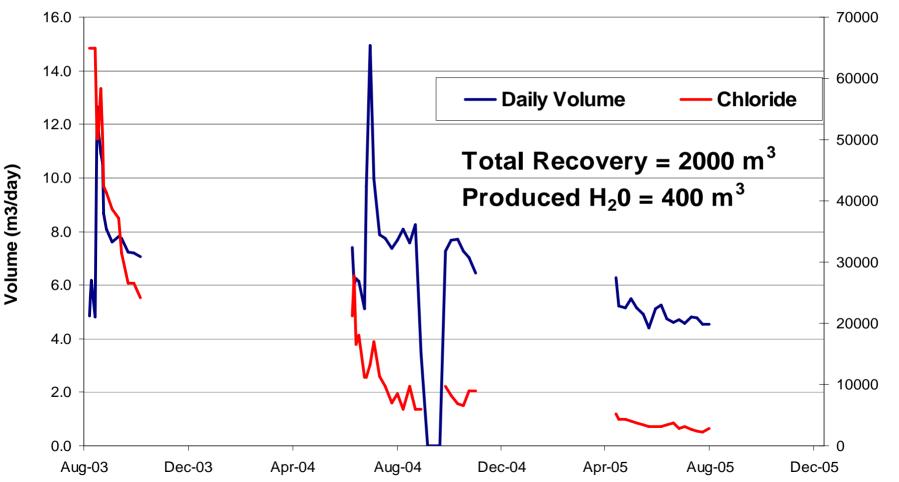
 (chloride concentration of recovered water /
 chloride concentration of the produced
 water) x the recovered volume

Saltwater Recovery Summary

Geology	Start	Chloride Concentration (mg/L)		Recovered Water (m ³)	Average Annual Recovery (m ³)	Produced Water Equivalents (m ³)
		Initial	2005			
Clay till	1996	2,300	2,800	1,200	130	270
Silt	2000	2,240	690	7,300	1,460	112
Sand	2001	19,200	2,900	8,300	1,850	920
Sand & Gravel	2001	21,000	1,100	1,220	300	118
Bedrock	2003	24,000	1,700	1,115	450	107

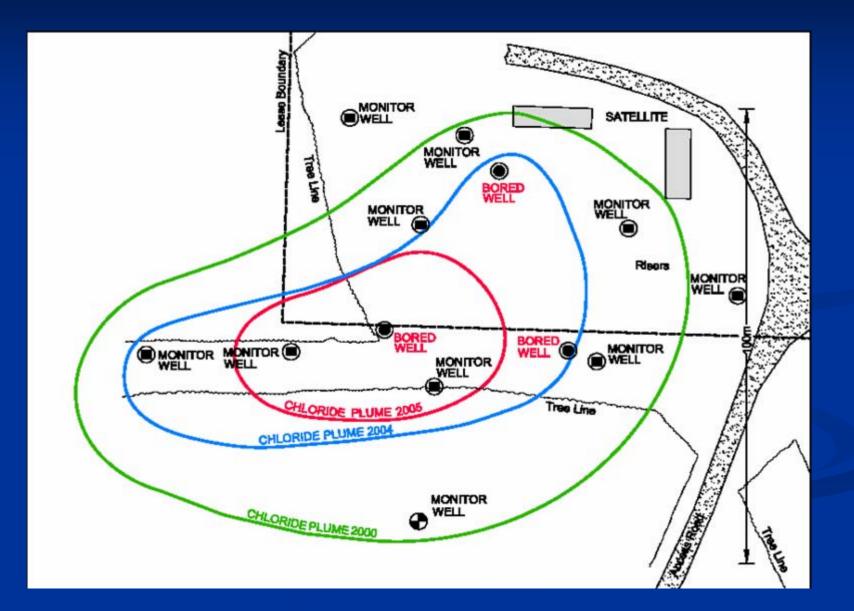

Tough to Estimate % Recovery

Usually the mass of salt released is unknown


Spill reports are often one to three orders of magnitude low – corroded pipelines can leak slowly for a long time before discovered

Salt is partitioned in soil, soil porewater, and groundwater

Decreasing EM Intensity



Groundwater Recovery Record

Chloride (mg/L)

GW Plume Reduction

Operating GW Recovery Systems
Pipeline to disposal well is lowest cost

Year round operation preferred, frost protection is necessary

Water Act Approval is required

Maintenance and monitoring is crucial

Plugged Tile

Scale Problems

Other Remediation Methods Phytoremediation – harvest and remove crop Soil washing for coarse soils or small salt mass Natural attenuation for diffuse low intensity impact areas

New research areas

Closure Issues

Many priorities for industry managers

Long term funding and management

Landowner interactions

Changing regulatory expectations

Site Closure - Moving Targets

 C & R - Reclamation Certificate for specified land (well leases, pipelines, roads, mines, etc.)

Remediation Certificate not yet available

How to measure equivalent capability

Land use changes - more sensitive receptors

Risk Assessment / Site Management

Contain impacts and perhaps recover salts

Exclude or protect sensitive receptors

Manage the site
 engineering controls
 limit land uses
 monitor effectiveness

Conclusions

Every site is unique and needs assessment

Accurate information about the site is crucial

Rapid response pays big dividends

Salt recovery or removal is usually required

More Conclusions

Good records are invaluable to assess remediation progress and performance

Deal effectively and consistently with landowners and regulators - <u>keep promises</u>

Try to get buy-in for closure before you start

QUESTIONS?