

Thomson
Hydrogeologic
Ltd.

The Well

- Acheson 100/02-26-052-26W4M
- Drilled in 1952 by Imperial Oil
- Completed in the Leduc D-3A Pool
- First brought onto production in 1962
- Slightly sour (225 ppm H₂S)
- ~ 25 m Northeast of 102/02-26 Well

The Location

- Parkland County
 - Agricultural/Rural Residential
- ~ 200 m North of Enoch Cree Nation
- ~ 700 m West of Edmonton City Limit
- Multiple Regulatory Stakeholders
 - Provincial EUB & AENV
 - Federal HC
 - Municipal CHA
- Multiple Community Stakeholders

The Blowout

- Routine Workover
- Pulled tubing out on 11-Dec-2004
- Downhole casing failure occurred during wellhead pressure reading on morning of 12-Dec-2004
- Uncontrolled release of gas and well fluids at surface (primarily salt water)
- ~ 150 joints of tubing fell from rack on leaning service rig derrick into crater eroding around wellhead

Well Control

- Surface-kill operations attempted
 - Required wellbore entry through existing surface equipment
 - Efforts to stabilize swaying wellhead on 13-Dec-2005 resulted in unplanned ignition
 - Fire extinguished on 14-Dec-2005
 - Inspection revealed wellhead BOPs too damaged by fire for surface wellbore entry
 - Well purposely re-ignited on 16-Dec-2005

Well Control

- Two relief wells were drilled
- 103/02-26 (northwest) to intercept and mill into the 100/02-26 production casing and allow kill fluids to be pumped into the wellbore
- 104/02-26 (southeast) to drill into the Leduc formation in close proximity to 100/02-26 as a backup to 103/02-26

Fluid Control

- Fluids flowing at ~ 100 m³/hour
- Crater restricted access to wellhead
- Fluid control became a priority
- Trenches and pits constructed to divert fluids away from wellhead

Thomson Hydrogeologic Ltd.

Dozers constructing West Pit

Work continues around the clock

Pumping fluids up to the South Pit

Fluid Control

- Fluids filled pits rapidly requiring efficient removal and disposal
 - ~ 150 Vacuum trucks worked 24-hours/day
 - 20 separate disposal wells/caverns used
 - ¾ of the facilities reached processing capacity
 - Total fluid hauling & disposal costs were running at \$ 350,000 - \$ 500,000 per day

Loading the vacuum trucks

Fluid control

- Once the situation was under control alternative options were investigated
- Centrifugation & Flocculation were tested to reduce suspended solids
 - did not work due to inconsistent feed
- Construction of containment cells at Acheson 04-02-053-26W4M treatment pad using contaminated soil and plastic liners
 - enabled reduction to 15 vacuum trucks and use of Acclaim disposal well
- Cost Saving: ~ \$ 10 Million

Slurry Waste Receiving Facilities

Disposal Company	# Receiving Locations	Volume m ³
MROR	1	676
Newalta	8	7,589
CCS	9	16,132
CNRL	1	1,007
PDS	1	7
Acclaim - Ponds	1	29,900
Acclaim – injection well	1	12,679
Total Volume	22	67,990

Well Abandonment

- Abandonment efforts began once the well had been brought under control
- The breach in the well casing was much deeper than the base of the crater
- Excavation was required below the water table in very unstable, saturated silt/sand
- This was achieved using a well point dewatering system and a custom built shoring box

The Crater

Well Abandonment

- Partial backfilling of the excavation to enable service rig access
- Dewatering system continued to operate to maintain stability
- ~ 12 m³/hour of water produced for disposal

Environmental Protection

- Air Monitoring
- Release Control (fluid control)
- Groundwater Monitoring
- Contaminated Soil Removal (source removal)
- Groundwater Remediation

Soil and Groundwater Team

Air Monitoring

- Air quality monitoring began on the morning of 12-Dec-2004 using hand-held unit ~ 500 m downwind (H₂S & LEL)
- Three mobile monitoring units added
- Eight fixed monitoring units set up
- EUB dispatched two mobile units
- AENV dispatched mobile air monitoring lab
- Highest 1-hour average H₂S reading 70 ppb recorded on 15-Dec-2005 downwind ~ 500 m

Groundwater Monitoring

- Unconfined sand aquifer
 - From just below ground surface to bedrock at ~ 30 m
 - Main source of domestic water for acreage properties and residences on Enoch Cree Nation

Groundwater

- 30 domestic water wells tested within 2 km
- Three monitoring wells installed on site
- Flow velocity = ~ 15 m/yr

Sodium, Chloride and TDS in Water

Groundwater Management

- No evidence of GW impacts in the domestic wells or the on-site monitoring wells
- Following surface restoration a series of vertical conductivity probes are planned
- Subsequently Piezometer installation & GW monitoring
- Implementation of GW Remediation Plan: Engineering & Risk Management

Soil Management: Objectives

- Waste Characterization: Source & Piles
 - Field screening
 - Lab confirmation
- Remove impacts from the unsaturated zone
 - Pit area
 - Under stockpiles & traffic areas
- Site Reclamation

Pile Sampling

- 571 samples collected and field screened from ~205,000 m³ of solids
- Each sample represented ~350 m³
- 122 samples submitted for analytical verification

Field-Lab Correlations: Salinity Data

Correlation coefficients	Field EC	Field Cl	Lab EC	Lab SAR	Lab Cl
Field EC	1.00	0.94	0.92	0.88	0.91
Field CI	0.94	1.00	0.98	0.91	0.95
Lab EC	0.92	0.98	1.00	0.95	0.99
Lab SAR	0.88	0.91	0.95	1.00	0.94
Lab Cl	0.91	0.95	0.99	0.94	1.00

- Compared field and lab results for over 400 samples
- Field EC had high correlations with Field Cl, Lab EC, Lab SAR, Lab Cl
- Field CI had high correlations but problems with readings (silt)
- Field EC is best to predict Lab EC and Lab Cl (especially Cl<5,000 mg/kg)

Correlations ≥0.75 are shown as:

Correlations ≥0.90 are shown as:

Correlations = 1.00 are shown as:

Field-Lab Correlations: Hydrocarbon Data

Correlation coefficients	Field HCs: PF	Field HCs: OVA	Lab HCs: Light HCs	Lab HCs: Heavy HCs	Lab HCs: Total HCs
Field HCs: PetroFLAG	1.00	0.19	0.47	0.60	0.60
Field HCs: OVA	0.19	1.00	0.16	0.15	0.15
Lab HCs: Light HCs (BTEX + F1)	0.47	0.16	1.00	0.65	0.66
Lab HCs: Heavy HCs (F2+F3+F4)	0.60	0.15	0.65	1.00	1.00
Lab HCs: Total HCs	0.60	0.15	0.66	1.00	1.00

- Compared field and lab results for over 150 samples
- Prior work: OVA good for light HCs, PetroFLAG good for heavy or total HCs
- Initial results:
 OVA weak with all,
 PetroFLAG weak
 with light HCs, fair
 with heavy and total
- OVA <100 ppm: no correlation
- OVA >100 ppm: strong correlation with lighter HCs

Removing Impacted Soil

Excavation Sampling

- More than 900 samples were collected and field tested from the walls & floors
- More than 300 samples submitted for analytical verification

Geophysics Map – 1.5 m

Geophysics Map – 5 m

Soil Management

- Clean/impacted soil handled separately
- Impacted soil landfilled
- All impacts in the unsaturated zone have been removed from the pit area
- Minor surface impacts identified with geophysics – currently being removed

Soil Waste Material Balance

Waste Source	Туре	Volume (m³)	Volume (T)
2-26 Red-zone	Impacted	33,777	50,666
	Geophysics hotspots	11,446	17,168
2-26 Non-red zone	Impacted	98,511	147,767
	Geophysics Pit Hotspots	2,000	3000
	Geophysics Surface Impacts	10,350	15,525
Sub-total: 2-26	Impacted Soil	149,084	223,625
4-02 Solids	Berms & Sludge	33,323	49,985
turn turn turn	Injection Well	10,284	15,426
Sub-total: 4-02	Impacted Soil	43,607	65,411
2-26 Red-zone	Clean	9,494	14,241
2-26 Non-red zone	Clean	14,967	22,451
Sub-total	Clean Soil	24,461	36,692
TOTAL		224,152	325,727

Soil Management – Residual Impacts

- Main Pit: Salinity, F2 hydrocarbon & boron impacts remain in the saturated zone
- West Pit: Salinity impacts remain at the base (saturated zone) of the west pit
- South Pit: Minor salinity impacts remain in the saturated zone (EC – 3.61 dS/m)

Enoch Fill – Subsoil Pile

Enoch Fill – Topsoil Pile

04-02 Slurry Ponds

- Characterization
- Remediation
- Reclamation

4-2-53-26-W4 Oct-18-05 Material ready to haul to landfill.

Questions???

