Evaluation of Denitrification as a Natural Attenuation Mechanism in a Nitrate-Contaminated Aquifer

Trevor Butterfield, M.Sc.
Mark Trudell, Ph.D., P.Geol.
Komex International Ltd.

Remediation Technologies Symposium 2005 October 19-21, 2005

Outline

- Background information
- Investigation methodology and site characterization results

 Assessment of nutrient impact to groundwater and potential for denitrification

Background information

- Turkey farming operation area of interest for environmental investigation was solid manure storage area
- Animal manure is a potential source of nutrients (N, P, K), salts, and bacteria to groundwater
- Nitrate is a common contaminant in agricultural areas – human health risk in drinking water

Background information

- Farm is located approx. 5 km NW of Devon, Alberta (25 km SW of Edmonton)
- Area is dominated by bedrock low, which is associated with a network of buried valleys
- Up to 50 m of drift underlies site
 - dune sand and occasional peat near surface
 - * more silt and sandy silt with depth
 - * coarse sand associated with buried valleys

Potential receptors

- Approximately 70 water wells identified within a 2-km radius of the site
- About 20% of these are completed at a depth of 15 m bgs or less
- Regional hydrogeological study identified area of site as being at "very high risk" to groundwater contamination

Soil characterization results

- Surficial soils (<1 m bgs) generally characterized with elevated EC, salt (Na,Cl), and select available nutrient concentrations
 - * NO₃, K, SO₄, sometimes P
- Composite samples from the ground surface had even higher concentrations and significant NH₄
- Vertical profile at one location (S03-6) showed that nutrient concentrations and salinity parameters decreased with depth in the surficial sand

Groundwater characterization results

- Stratigraphic profile
 - * Sand from ground surface to 6 to 15 m bgs
 - * Silty clay/clay confining unit to 20 m bgs
 - * Coarse sand and gravel in buried valley to max depth (27 m bgs)
- Groundwater flow up to 20 m/year, vertical gradients indicate downward components of groundwater flow
- Initial results showed that nitrate-impacted shallow groundwater appeared to be limited to directly beneath manure storage area
- Geochemical conditions may be favourable for denitrification

Assessment of nutrient impact to groundwater

- Elevated concentrations of indicator parameters known to be present in manure, beneath and extending away from source areas
 - * K, Cl, NH₄, NO₃, DKN, DOC
- Indirect indicators: elevated EC, TDS, select major ions (e.g., sulphate) altered from natural conditions
- Of indicators, Cl and NO₃ are most soluble and mobile in groundwater – use their distributions to delineate the nutrient impact to groundwater

Potential for denitrification

- Overall goal of program is to monitor reduction of nitrate concentrations with distance from source areas
 - * Biodegradation, dilution, dispersion, abiotic transformations could all contribute to decreasing nitrate concentrations
- Denitrification = natural attenuation!
 5CH₂O + 4NO₃⁻ → 5CO₂ + 2N₂ + 3H₂O + 4OH⁻

converts nitrate to an innocuous product and removes nitrogen from the system, improving water quality

Conditions necessary for denitrification

- 1. A source of nitrate
- 2. Denitrifying bacteria
- 3. A source of labile organic carbon
- 4. Anaerobic, reducing conditions in the aquifer

Unsaturated zone processes

Nitrification of "effluent" NH_4^+ $NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O_3$

Consumption of "effluent" DOC

$$CH_2O + O_2 \rightarrow CO_2 + H_2O$$

 $CO_2 + H_2O \rightarrow HCO_3^- + H^+$

Results: production of nitrate, consumption of oxygen, acidification, production of bicarbonate

Labile organic carbon

- Dissolved organic carbon (DOC) concentrations range from approximately 10 to 830 mg/L
- Turkey manure typically has a low TOC:TN ratio
 - * Organic carbon readily breaks down, rapid rate of mineralization = labile
 - * Litter/bedding may also be source, but typically has a higher TOC:TN ratio
- Aquifer is also likely a source of DOC
 - * TOC was 0.2 to 2.5 wt.% of solid phase samples obtained

Anaerobic, reducing conditions

- Well defined sequence of redox reactions in organicmatter containing aqueous systems
- We have seen that bacterial respiration of organic matter removes oxygen from the system, therefore lowering the redox potential
- Do field-based measurements of DO and redox potential corroborate other evidence for denitrification?

Summary

- Denitrification is occurring at the site
 - * High source area nitrate concentrations decrease in downgradient direction, not conservative relative to chloride
 - * No apparent stratigraphic barrier to vertical nutrient migration in upper sand → geochemical conditions responsible for nitrate reduction with depth
 - Geochemical conditions necessary for denitrification were demonstrated at the site
 - Source of nitrate, labile organic carbon, anaerobic, reducing conditions

Summary

- Surficial soil samples taken after source removal indicated that remaining soils continue to be a source of elevated nutrient concentrations
- Continue to monitor and assess potential for denitrification as an effective remedial option, ensure that above guideline nitrate concentrations not migrating off-site

