

CREATING AND DELIVERING BETTER SOLUTIONS

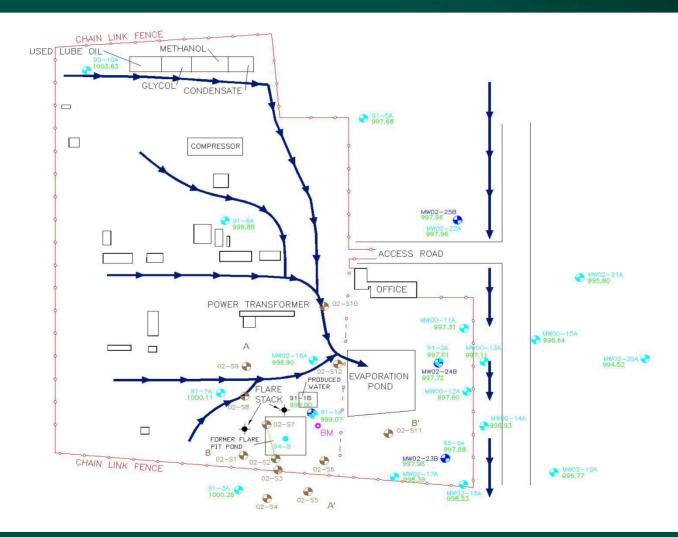
Sulfolane Impacted Soil and Groundwater Treatability Study

Vladimir Agatonovic, P.Geol. - EBA Elena Vaisman, P.Chem. - U of C

> EBA ENGINEERING CONSULTANTS LTD.

Outline

- 1. Introduction
- 2. Soil and Groundwater Quality Monitoring Results
- 3. Sulfolane Sulfinol[®]
- 4. Laboratory Treatability Trial
- 5. Treatability Trial Results
- 6. Conclusions


Introduction

- Active Sour Gas Plants
- Gas Sweetening
- Gas Dehydration
- Treatment

Products : Condensate and Natural Gas

Site Plan

Physical Settings

Topography and Drainage:

• Porcupine Hills (1,600 masl).

Geology:

- Fill/gravel 0.5 m.
- Silty Clay Till 2.5 m to 9.2 m, sand lenses.

Hydrogeology:

- Shallow water table at 1.7 m to 3.4 m.
- Groundwater flows towards east.
- Bulk hydraulic conductivity 1.02 E-5 cm/s to 1.41E-7 cm/s.

Soil and Groundwater Quality

Under the Alberta Environment Approval to Operate:

- Soil Management Program Alberta Environment Soil Monitoring Directive (1996) – every five years.
- Groundwater Quality Monitoring Program initiated in 1991 – annually.

Soil

- Elevated concentrations of petroleum hydrocarbons (PHCs) detected – benzene, toluene, ethylbenzene, and xylenes (BTEX) and F₁, F₂, and F₃.
- Elevated chloride concentrations detected.

Groundwater

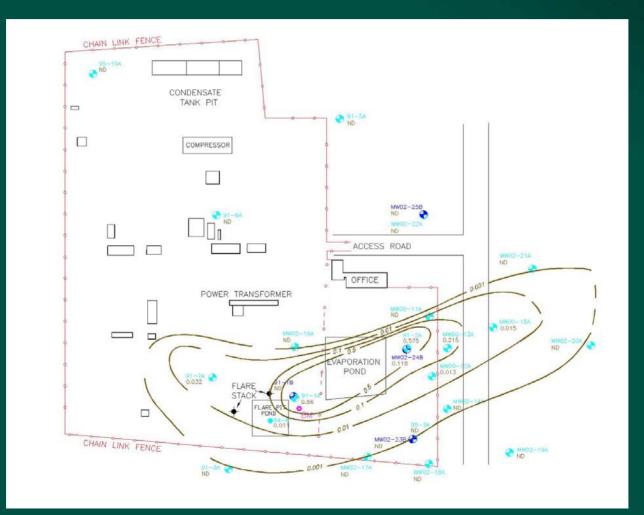
Historically elevated concentrations of:

- PHC BTEX and F_1 and F_2 .
- Dissolved Organic Carbon (DOC).
- Chlorides.
- Sulphate (naturally occurring).
- Nitrites and Nitrates.
- Total Dissolved Solids (TDS).

The DOC and PHC concentrations do not correlate.

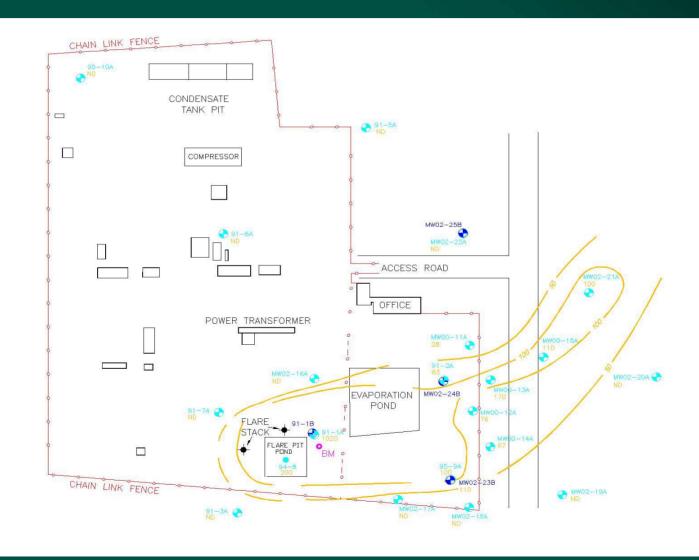
Assessment

- Resolution of elevated concentrations of DOC initiated the plant site product inventory review.
- Product review detected that, in 1992, existing amine process replaced Sulfinol process.
- Sulfinol process was mixture of Sulfinol[®] and DIPA.
- In 2000, Sulfolane analyses were added to the regular annual groundwater quality monitoring.



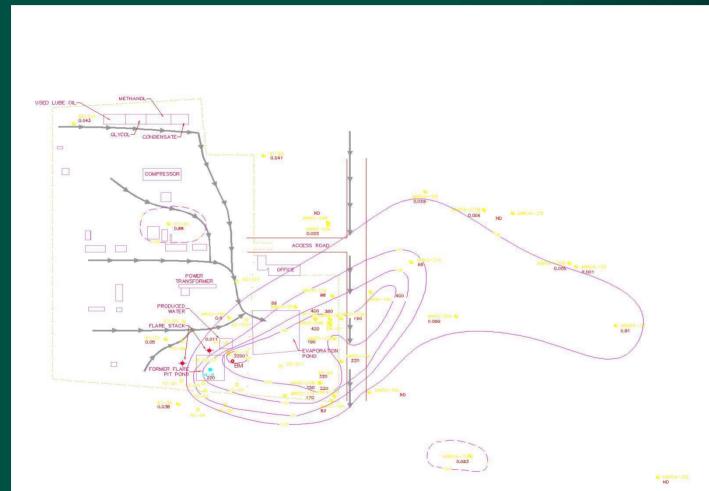
Assessment continued...

- Half the monitoring wells returned concentrations of sulfolane greater than background concentrations.
- In 2002, soil and groundwater with elevated concentrations of PHC and Sulfolane were partially delineated in the vicinity of the former flare pit and east of the Evaporation Pond.
- Sulfolane was detected in all collected soil samples in the vicinity of former flare pit.



Benzene Concentration Distribution Map 2002

Sulfolane Concentration Distribution Map 2002



Assessment continued...

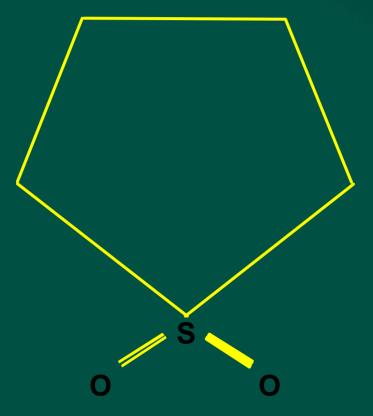
- In 2004, additional groundwater quality monitoring wells were installed to further delineate the groundwater with concentrations of sulfolane greater than background concentrations.
- One groundwater extraction well and one observation well were installed to determine hydrogeological properties of a shallow water-bearing zone.

Sulfolane Concentration Distribution Map 2004

eba

Assessment continued...

 In 2005, the Canadian Council of Ministers of the Environment (CCME) and Alberta Environment adopted the Canadian Association of Petroleum Producers (CAPP) guidelines for sulfolane: in soil (2.3 mg/kg) and groundwater (0.26 mg/L).



Sulfolane

- Sulfolane (C4H8O2S) common trade name for an organic chemical tetrahydrothioprene 1,1 -- dioxide, colourless, very polar, highly soluble in water, and extremely stable.
- Sulfinol[®] solvent developed by Shell in early 1960s for extracting aromatics from hydrocarbons; second major application is in the process of 'sweetening' natural gas.
- Sulfinol[®] is slightly heavier than water (1,060 g/L).

Sulfolane

Laboratory Trials

Soil:

• Bio-treatability.

Groundwater:

- Bio-treatability.
- Chemical Oxidation (Mineralization).

Soil Trial

- Five soil samples collected.
- Sulfolane concentrations ranged from 350 mg/kg to 3,400 mg/kg.
- Two samples with highest concentrations of sulfolane were homogenized – 1,400 mg/kg.
- Samples for analytical analyses collected on days 0, 15, 30, 45, 63, and 78.

Soil Trial

7 Bio-reactors:

- Control no additives.
- Sterile.
- Condensate impacted.
- Ammonia nitrogen (83 mg/kg).
- Ammonia nitrogen (232 mg/kg).
- Ammonia phosphate (83 mg/kg).
- Ammonia phosphate (232 mg/kg).

Oxygen concentrations maintained >10%.

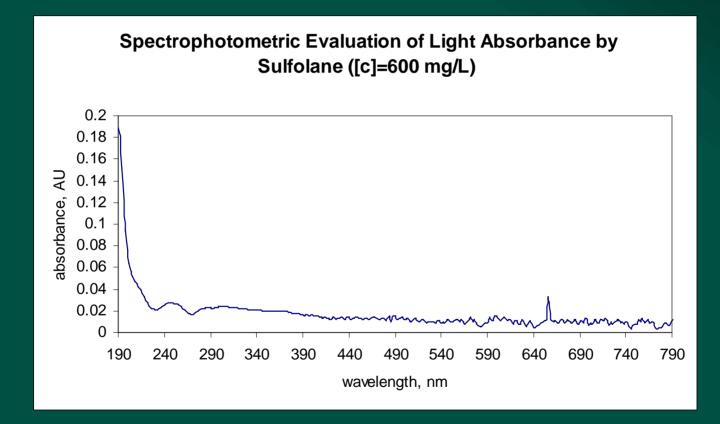
Bio-treatment:

Aeration (GLR micro-bubbles[®]) and nutrient amendment.

Chemical Oxidation:

- H₂O₂.
- UV radiation.
- Combination of both of the methods.

Aeration Trial:


- 24-hour trial.
- Continuous aeration O₂>7.7 mg/L.
- Nutrient Ammonia phosphate.
- Samples collected at 0, 8, and 24 hours.

Chemical Oxidation:

- 7-day trial.
- H_2O_2 concentration = 10 g/200 ml.
- UV radiation 7 W UV bulb.
- $C_4H_8O_2S + 13H_2O_2 = 4CO_2 + H_2SO_2 + 16H_2O_2$

Results - Soil

			Ammonia	Nitrate	Ammonia	Phosphate
Days	Control	Sterile	83 mg/kg	232 mg/kg	83 mg/kg	232 mg/kg
0	1,300	1,400	1,700	1,700	1,400	1,400
15	1,700	1,600	1,500	1,500	1,500	1,400
78	1,100	1,200	860	760	2.1	2.9

Results - Groundwater

Sample Description	Sulfolane (mg/L)	Removal Ratio (%)	Time (hours)
Blank	1,200 (1,800)		
Chemical oxidation	950	79	
UV Irradiated sample	1,000	83	
Chem. Oxidation + UV	13	99	168
Aeration + Nutrients	490	73	24

Results - Groundwater

Energy consumed by the samples was calculated using the following formula:

•
$$P = E_{photon} * I/S = 0.2 m J/sec cm^2$$

Where:

- E_{photon} energy of a single photon
- I intensity of the photon flux in the system, and
- S surface of irradiated vessel

Results - Groundwater

[Using the sun as source of UV radiation]

Based on commonly used potassium ferrioxalate system irradiation value, the estimated solar energy is:

 $E_{solar} = 3.5 \text{ mW/cm}^2$

Therefore, a week of UV radiation in the lab will be equal to **10 hours** of sun exposure.

Conclusions

Soil:

- Sulfolane biodegradation is possible (bacteria require longer time to adjust to environment).
- After 78 days of incubation with ammonia phosphate fertilizer, the soil sample becomes non-toxic to Microtox[®].
- Full sulfolane biodegradation occurred with an ammonium phosphate fertilizer.
- No obvious production of toxic by-products.

Conclusions

Groundwater:

- The sulfolane degradation occurred under the chemophysical and biodegradation (aeration) processes.
- The chemical oxidation and UV irradiation trial achieved 95% removal of sulfolane after one week of treatment.
- The biodegradation treatment achieved 73% of sulfolane removal after 24 hours.

Conclusions

Chemical Oxidation:

 If field scale treatment utilizes sunlight, 10 hours of the daily light will be required.

*Note: UV reactor should be considered as more effective method

Biodegradation:

• Field scale treatment would require a water treatment and storage facility.

Acknowledgements

Enviro-Test Laboratories Ltd. University of Calgary, TIPML Hydroqual Laboratories Ltd. Ecoterra Solutions Inc.

Jeff Wilson, Ph. D., P. Biol.. Microbial Answers Inc. Kathryn Bessie, P. Ag., EBA Engineering Consultants Ltd.

CREATING AND DELIVERING BETTER SOLUTIONS

THANK YOU

EBA ENGINEERING CONSULTANTS LTD.

