IN-SITU BIOREMIEDIATION EVALUATION USING THE WATERLOO EMITTER™

Douglas A. Sweeney, M.Sc., P.Eng. and Ian Mitchell, M.Sc., P.Geo.

October 2004

PRESENTATION OUTLINE

- Introduction
- Case Study
- Waterloo Emitter[™] Evaluation
- Results
- Field Test Protocols
- Summary

INTRODUCTION

- Since mid 1990s Natural Attenuation has progressed the understanding of "degradation" of hydrocarbons – Wiedemeier, ASTM, US EPA
- NA "biodegradation, dispersion, dilution, sorption and volatization and/or chemical biochemical stabilization of contaminants..."
- Biodegradation Primary mechanism of attenuating biodegradable contaminants
- Bioremediation biochemical reactions of Natural Attenuation (five key oxidation/reduction reactions)

REDOX REACTIONS

- Oxidation by Aerobic Respiration
 7.5 O₂ + C₆H₆ --- 6 CO₂ + 3 H₂O
 0.33 mg/L C₆H₆ degraded per mg/L O₂ consumed
- Oxidation by Nitrate Reduction 6NO₃⁻ + C₆H₆ + 6H⁻ --- 6CO₂ + 6H₂O + 3N₂ 0.21 mg/L C₆H₆ degraded per mg/L NO₃⁻ consumed
- Oxidation by Iron Reduction
 30 Fe (OH)₃ + C₆H₆ + 60H⁺ --- 6CO₂ + 30 Fe₂⁺ + 78 H₂O
 0.047 mg/L C₆H₆ degraded per mg/L Fe₂⁺ produced

• Oxidation by Sulphate Reduction 7.5 H⁺ + 3.75 SO₄²⁻ + C₆H₆ --- $6CO_2$ + 3.75 H₂S + 3 H₂O 0.22 mg/L C₆H₆ degraded per mg/L SO₄²⁻ consumed

Oxidation by Methanogenesis
 4.5 H₂O + C₆H₆ --- 2.25 CO₂ + 3.75 CH₄
 1.3 mg/L C₆H₆ degraded per mg/L CH₄ produced

BTEX UTILIZATION FACTORS

 Unit mass of hydrocarbon "degraded" per unit mass of electron acceptor consumed or redox product produced

0.21

0.05

0.21

1.28

- Aerobic Respiration 0.32
- Denitrification
- Iron Reduction
- Sulfate Reduction
- Methanogenesis

EXPRESSED ASSIMILATIVE CAPACITY

 $EAC = UF \mid C_b - C_b \mid$ EAC – amount of hydrocarbon "degraded" based on amount of electron acceptor consumed or redox product produced • UF – utilization factor C_b – background concentration of electron acceptor • C_p – concentration of electron acceptor in plume

CASE STUDY

 Former Service Station located in a small town in Northeast Alberta

Operated for 30 years

Assessed in 2002 & 2004

SITE PLAN

CASE STUDY

Stratigraphy

- 2 m to 3 m of Clay Till
- Clean fine to medium grained sand
- Hydrogeology
 - Primarily confined aquifer
 - Groundwater levels approximately 2.2 m to 3.5 m below surface
 - Seasonal fluctuations of 0.5 m
 - Hydraulic Conductivity of 1 x 10⁻⁴ m/s to 5 x 10⁻⁵ m/s
 - Gradient .002 m/m to .003 m\m
 - Groundwater velocity 11 m/year to 32 m/year

Cross Section

Groundwater Flow

REMEDIAL/RISK MANAGEMENT OPTIONS

Excavation Economics and Practical issues Dual Phase Economic issues due to water treatment Air Sparging Vapour Migration Control issues In-Situ Bioremediation Further Evaluation

WATERLOO EMITTER TM

- Rational effective method of oxygen delivery and relatively simple technology with potentially low maintenance issues
- Developed and patented by University of Waterloo – 1997, Wilson and MacKay
- Diffusion device based on Fick's First Law - oxygen delivery is established by concentration gradient
- Coil of silicon tubing pressurized, providing a controlled and uniform delivery of dissolved oxygen

WATERLOO EMITTER TM

Waterloo EmitterTM EVALUATION

Field and Laboratory Program

- Field Parameters and Geochemical testing (DO, Fe₂⁺, NO₃⁻, SO₄²⁻, CH₄)
- Current EAC
- Potential EAC with delivery of Oxygen
- Microbiological Program
 - HAB BART Tests Heterotrophic Bacteria
 - Potential for Biological plugging
- Modelling
 - Predict Long Term Performance

RESULTS

FIELD & LABORATORY PROGRAM

- Depressed DO levels within plume
- Depressed NO₃⁻ levels within plume
- Elevated Fe₂⁺ levels within plume
- Depressed SO₄²⁻ at leading toe of plume
- Slightly elevated CH₄ levels within plume
- Clear "lines of evidence" of in-situ bioremediation occurring - NA

SUMMARY OF EXPRESSED ASSIMILATIVE CAPACITY												
(EAC)												
Sample ID	BH9	BH105		BTEX								
Location	Plume	Background	Delta	EAC								
Date												
Aerobic respiration	0.4	25 to 30 mg/L	3.3	1.06 10								
Dentrification	< 0.2	2.1	1.9	0.4								
Iron Reduction	3.17	0.01.01	3.16	0.16								
Sulfate Reduction	37	20		0								
Methanogenesis	0.0018	.0002	0.0016	0.002								
EAC Total				1.62								
Total BTEX (BH9)				14.4								

Insufficient "Capacity"

RESULTS

Microbiological Program

- Significant correlation between HAB population and Hydrocarbon concentrations and evidence of oxidative aerobic activity within plume
- Increased Biodegradation rates possible if aerobic environment (oxidative bubble) maintained or increased for HAB to dominate
- Biomass build up could create potential for biological plugging – must be monitored, protocols developed

BIOSCREEN – Model Overview

 BIOSCREEN is a simple, spreadsheetbased model developed by the US EPA as a natural attenuation decision support system

 BIOSCREEN is based on the widely used Domenico analytical solute transport model

BIOSCREEN

Domenico Model with Instantaneous Reaction Superposition Algorithm

$$\frac{C(x, y, o, t)}{(Co + BC)} = \frac{1}{8} \exp\left[\frac{x}{\alpha_x 2} \left(1 - \left(1 + 4\lambda \alpha_x / v\right)^{1/2}\right)\right]$$
$$erfc\left[\frac{\left(x - vt\left(1 + 4\lambda \alpha_x / v\right)^{1/2}\right)}{2(\alpha_x vt)^{1/2}}\right]$$
$$\left\{erf\left[\frac{\left(y + Y/2\right)}{2(\alpha_y x)^{1/2}}\right] - erf\left[\frac{\left(y - Y/2\right)}{2(\alpha_y x)^{1/2}}\right]\right\}$$
$$\left\{erf\left[\frac{(Z)}{2(\alpha_z x)^{1/2}}\right] - erf\left[\frac{(-Z)}{2(\alpha_z x)^{1/2}}\right]\right\} - BC$$
where:
$$v = \frac{K \cdot i}{\theta_x R}$$
$$BC = \Sigma \frac{C(ea)_n}{UF_n}$$

BIOSCREEN – Model Overview

BIOSCREEN can be used to assess three different solute transport scenarios:

Transport without biodegradation

 Transport with biodegradation modelled as a first order decay process

• Transport with biodegradation modelled as an instantaneous reaction

BIOSCREEN – Model Limitations

- The BIOSCREEN Model is a screening tool only. It approximates more complicated processes that occur in the field
- Simple groundwater flow conditions are assumed
- Uncertainties in a number of parameters are lumped together in the decay coefficient

BIOSCREEN – Modelling Objectives

 To assess the extent of the benzene plume through time

- To assess benzene degradation rates presently occurring at the site
- To assess the feasibility of hydrocarbon remediation by enhancing aerobic biodegradation processes

BIOSCREEN – Modelling Process

- Development of conceptual model and characterization of site-specific BIOSCREEN input parameters
- Calibration of model to current site conditions
- Sensitivity analysis to determine key parameters and ongoing data requirements

BIOSCREEN Modelling Process

BIOSCREEN INPUT

BIOSCREEN Natural Attenuation Decision Support System						Keesler	Keesler AFB Data Input Instructi			ns:
*Air Force Center for Environn	mental Exce	ellence		Version 1.4		SWMU 6 Ru	66 in Name		115 1. EI or 2. Ca	nter value directlyor alculate by filling in grey
1. HYDROGEOLOGY				5. GENERAL					0.02 ce	lls below. (To restore
Seepage Velocity*	Vs	63.5	(ft/yr)	Modeled Area Length*	300	(ft) 📫		→	for	mulas, hit button below).
or		٨ or		Modeled Area Width*	85	(ft) W		> 🛛 Vari	able* — ⊳ Data	a used directly in model.
Hydraulic Conducti∨ity	K	8.0E-03	(cm/sec)	Simulation Time*	15	(yr) 🕇			20 —⊳Value	e calculated by model.
Hydraulic Gradient	i	0.0023	(ft/ft)						(Doi	n't enter any data).
Porosity	n	0.3	(-)	6. SOURCE DATA						
				Source Thickness in S	Sat.Zone*	8 ((ft) V	/ertical Plane	Source: Lool	k at Plume Cross-
2. DISPERSION				Source Zones:			S	Section and Ir	nput Concentra	tions & Widths
Longitudinal Dispersi∨ity*	alpha x	13.8	(ft)	Width* (ft) Conc. (mg/L))*		<u>f</u> c	<u>or Zones 1, 2</u>	2, and 3	
Trans∨erse Dispersi∨ity*	alpha y	1.4	(ft)	15 2						
Vertical Dispersi∨ity*	alpha z	0.0	(ft)	15 9	2					
or		🛧 or		15 14	3	Ð 🗄				
Estimated Plume Length	Lp	300	(ft)	15 9	4	▲				
				15 2	5					
3. ADSORPTION				Source Halflife (see Help	o): 🔁	i				
Retardation Factor*	R	1.1	(-)	40 90	(yr)			ν	iew of Plume	Looking Down
or		🛧 or	-	Inst. React. 🔨 🕂 1st Order	1 7	•				
Soil Bulk Density	rho	1.7	(kg/l)	Soluble Mass 300	(Kg)		Observ	ed Centerline	e Concentratio	ns at Monitoring Wells
Partition Coefficient	Koc	83	(L/kg)	In Source NAPL, Soil		1	1	If No Dat	a Leave Blank	or Enter "0"
FractionOrganicCarbon	foc	2.0E-4	(-)	7. FIELD DATA FOR CO	MPARIS	ри				
				Concentration (mg/L)	11.0	8.6				.001
4. BIODEGRADATION				Dist. from Source (ft)	0	30	60	90 120	150 180 2	210 240 270 300
1st Order Decay Coeff*	lambda	6.9E-1	(per yr)							
or		<mark>↑ </mark> or		8. CHOOSE TYPE OF O		O SEE:				
Solute Half-Life	t-half	1.00	(year)	DUN					Halm	Recalculate This
or Instantaneous Reaction	on Model		1	RUN	R		RAY		пер	Sheet
Delta Oxygen*	DO	10	(mg/L)							
Delta Nitrate*	NO3	2	(mg/L)						Paste	Example Dataset
Observed Ferrous Iron*	Fe2+	16.6	(mg/L)	View Output		iew Ou	Itput		Restor	e Formulas for Vs
Delta Sulfate*	S04	19.6	(mg/L)						Dispersiviti	es R lambda other
Observed Methane*	CH4	0.01	(mg/L)						Бізреізічі	

Benzene Concentration VS Distance

Benzene Concentration VS Distance

3 Years

Benzene Concentration VS Distance

Benzene Concentration VS Distance

6 Years

Benzene Concentration vs Distance

Benzene Concentration vs Distance

14 Years

Benzene Concentration VS Distance

BIOSCREEN - Conclusions

- Biodegradation of benzene is most closely approximated by a first order rate constant
- The dissolved plume is likely already at steady-state conditions

 If dissolved oxygen levels of 25 to 30 mg/L can be achieved, off-site regulatory compliance is expected to occur within 10 to 20 years

PROPOSED FIELD TEST PROTOCOLS

- Pure Oxygen versus Air avoid nutrients in emitters
- Nutrient addition at edges of plume "entice" biomass away from emitters
- 150 mm well diameter for 100 m emitter avoid tight spacing
- Continuous operation avoid biomass movement toward emitters
- BART testing to assess biomass accumulation and biological plugging

SUMMARY

- Based on site characterization data and preliminary evaluation, the Waterloo Emitter™ may be an effective technology for delivery of oxygen to enhance In-Situ Bioremediation
- Protocols and a monitoring program have been established for a field trial

Your Canadian Environmental Business Partner For The Long Term