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• Background Information
• Health Canada Screening Level Risk Assessment 

Vapour Intrusion Guidance (further to 2003 guidance)
– Pathway Framework
– Vapour attenuation factor charts (J&E model)
– Critical inputs to J&E model (how derived)
– Validation of model results using empirical data
– Adjustments to attenuation factors (e.g., biodegradation)

• Conclusions

Presentation Outline
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• Common approach
– Johnson & Ettinger (J&E) model used to derive 

regulatory criteria, and for site specific risk 
assessment

– Biodegradation and source depletion have in 
some cases been added to J&E model framework

– Historically there has been concern over possible
conservatism associated with J&E model

Background and Key Issues
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Johnson & Ettinger Model
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• Mixing in Breathing Zone

• Convective Transport into Bldg

• Diffusive Transport Soil and 
Building Foundation

• Equilibrium Partitioning Soil/
Groundwater to Soil Vapour

Primary Parameters
• Deff = Effective diffusion coefficient
• LT = Depth to source
• AB = Building area in contact with soil
• QB = Building ventilation rate
• Qsoil = Soil gas convection rate
• Dcrack = Eff. diff. coeff. through cracks
• Lcrack = Crack thickness
• η = Building crack factor

Secondary Parameters
• Deff = fn(H, Dwater, Dair, θT, θw)

for each layer
• LT = Σ (Li)
• Qsoil = fn(k, ∆P, rcrack, zcrack, xcrack)

Indoor 
Air

Chemical
Vapour
TransportSoil Contamination

(residual or mobile NAPL)

Groundwater Contamination
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• Recent Experience
– Increasing number of sites where significant vapour

intrusion impacts have been documented (the pathway is 
real!)

– In a few cases has lead to severe consequences for public 
reaction, receptor relocation, and/or interim vapor 
mitigation measures when health risk demonstrated or 
perceived to be unacceptable

– Increased regulatory and industry interest in this pathway!

Background and Key Issues (cont)
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Redfield Site, Denver CO

1,1-DCE < state action level (0.49 ug/m3)

1,1-DCE > state action level (0.49 ug/m3)

1,1-DCE > EPA action level (200 ug/m3)
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Regression

 DCE_GROUNDWATER vs. DCE_INDOOR AIR (NEAR & MID PLUME APARTMENTS)

 DCE_IA = -.0549 + .00705 * DCE_GW

Correlation: r = .95977
DATA THOUGH JAN 1998
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• Challenges
– Pathway is complex, variable and difficult to model
– Model predictions can vary several orders of magnitude
– Model reliability not well characterized (but improving 

with recent studies)
– Generic standards/criteria tend to be overly conservative 

for most sites
– Site-specific use of model to derive criteria preferable 

but requires higher level modeling capabilities and 
appropriate input parameters

Background and Key Issues (cont)
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• Recent Developments
– Tiered framework for site screening using basic 

site data & modifying factors for more realistic 
evaluation of vapour intrusion combined with 
protocol for site-specific use of models 
(USEPA, Health Canada, BC SAB)

– Increased use of empirical data to validate
models & develop criteria

– Use of soil vapour data as opposed to soil data
– Recognition that in some cases subslab vapour

and indoor air testing may be warranted
– Supporting protocols (e.g, API Soil Gas Protocol)

Background and Key Issues (cont)
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Consider Exposure Controls or 
Receptor Re-location

Yes

No

Yes

No

No

Collect Additional Data

Inoperable Exposure Pathway

Yes

Estimate/ Measure Soil Vapour Conc
No

Yes

Screening Health Risk
Does ICLR > 10-5, HQ > 0.2

Conduct Detailed Risk Assessment

Acceptable Health Risk 

Adjust Alpha or Air Conc
1.  Biodegradation (reduce a 10X if eligible)

2.  Building Mixing Height
3.  Groundwater Mass Flux
4.  Soil Source Depletion

Yes

No

Immediate action 
may be warranted

Background Check
Predicted air concentration < background

Yes Evaluate Whether Detailed 
Risk Assessment Needed

No

High Risk Site? 
1. Wet basements direct contact contamination?

2. Chemical odours from subsurface source?
3. Explosive or acutely toxic gas concentration?

Low Risk Site?
1. Volatile and potentially toxic chemicals?

2. Contamination <30 m inhabitable building?

Site Characterization
Sufficient data to develop CSM?

Precluding Factors Alpha Charts?
Subslab vapour
data available?

No

Yes

Use α = 0.02

Select Base Attenuation Factor 
Based on soil type and contamination depth

Yes

Preliminary 
Screening

Secondary 
Screening

α
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HC Vapour Intrusion 
Guidance Framework



• Derived using J&E model for groundwater-to-indoor air 
(includes capillary transition zone) and soil vapour-to- indoor 
air pathways

• Fine- and coarse-grained soil and varying depth to 
contamination

• Residential (basement) & commercial scenarios (slab-at-grade)
• Factors are for benzene with assumption that properties most 

chemicals sufficiently similar to benzene
• Model inputs combination typical (average) and conservative 

values, based on latest science
• Base HC attenuation factors over one order-of-magnitude 

higher than CCME 2000 CWS-PHC values (why?)

Attenuation Factor Charts
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• Soil Moisture
• Soil Gas Advection (Qsoil)
• Building air exchange and 

mixing height 

Critical Input Parameters for J&E 
Attenuation Factor Charts
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Soil Moisture
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Soil Description + 
Grain Size

US SCS Soil Textures 
(Coarse=Sand, Fine=Loam)

Van Genuchten Water 
Retention Model

Unsaturated Zone 
(Vapor to Indoor Air 

Pathway)

Capillary Transition Zone 
(Groundwater to Indoor 

Air Only)

Moisture Content at 
Inflection Point in Water 

Retention Curve

Half-way Between 
Residual Water Content 

and Field Capacity
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• Water retention model for capillary transition zone results in 
modeled moisture content (MC) that is lower than true MC

• But there is evidence for lateral groundwater flow in capillary 
fringe (tension saturated zone), also water table fluctuations, 
therefore upper contamination boundary is above water table

• Analysis involving integration of effective diffusion coefficient 
suggests effect of:
– Conservative water retention model and non-contaminated 

capillary fringe is off-set by …
– True water retention model and contaminated capillary fringe & 

true water retention model off-set by (balancing effect)  

Soil Moisture

Ian Hers, 2004Golder Associates



• Function ∆P, soil properties (adjacent to foundation!), 
foundation properties

• ∆P depends on stack effect (indoor/outdoor temperature 
difference), wind, fan operation, unbalanced return air ducts, 
insufficient combustion air, fireplace use

• Stack effect:  Inside building heated (furnace, sunlight on roof), 
hot air rises, leaves “top of building”, creates ∆P, air enter 
available openings, which can be doors, windows, subsurface 
foundation (soil gas!)

• ∆P varies depending on house construction, season and 
climatic region

• Can estimate Qsoil using perimeter crack model (reliability?) or 
from empirical data (tracer tests)

Soil Gas Advection (Qsoil)

Ian Hers, 2004Golder Associates



Qbuild Cindoor

Qsoil

Qbuild+ Qsoil

Cvapor

α = Cindoor/Cvapor ~ Qsoil/(Qsoil+Qbuild) ~ Qsoil/Qbuild

If know Qbuild, then can estimate Qsoil
Keep in mind tracer test α is for 
source directly below building

Qsoil Estimated Using Tracer Test

Tracers include Rn, 
SF6, VOC

Analysis Assumes
Diffusion Negligible

Ian Hers, 2004Golder Associates
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• Sites with coarse-grained soils
• Qsoil/Qbuild: 0.0002 to 0.02
• Qsoil:   1 to 50 L/min (upper range is uncertain)
• Qsoil/Area-∆P:  0.005 to 0.04 L/m2-Pa
• Health Canada Guidance

– Qsoil = 5 L/min
– Qsoil/Qbuild = 0.003

Soil Gas Advection (Qsoil)

Ian Hers, 2004Golder Associates



• Empirical evaluation of vapour attenuation factors was 
important part of guidance development process

• Empirical alpha = measured indoor concentration / interpolated 
groundwater or soil vapour concentration below house 

• Empirical database 36 sites (research, USEPA, projects) …
data quantity & quality vary; several sources of uncertainty

• Prior to use, data was carefully evaluated and screened to 
remove less reliable data:
– Evaluate data trends and correlations (“vapour pathway analysis”)
– Evaluate effect of background VOCs
– Remove low concentration data

• Use 90th percentile or maximum empirical alpha’s for each site 
since goal is to be protective most sites

Model Validation Empirical Data
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Example Pathway Analysis
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y = 0.2718x
R2 = 0.082
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Influence Background VOC 
Concentration on Attenuation Factor

Golder Associates Ian Hers, 2004
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Groundwater-to-Indoor Air 
Chlorinated Solvents - Residential (HC Study)
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Figure 7. Residential Groundwater to Indoor Air Attenuation Factors
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USEPA IAVI Database
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USEPA IAVI Database
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USEPA IAVI Database
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CDOT HDQ Site, Colorado
GROUNDWATER SOURCE
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Biodegradation Adjustment (BTEX)

D

W

• Key biodegradation potential 
is O2 transport below building 

• Biodegradation potential 
affected by D,L,W, Cvapor, soil 
properties, capping effect

• Modeling study was con-
ducted to evaluate above 
parameters for gasoline 
LNAPL source

• Guidance Criteria: D > 4 m, 
no significant capping effect

L

Cap ?

Cvapor
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Conclusions & Recommendations
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Groundwater Mass Flux Adjustment 
(Conceptual Model)

If Volatilization Mass Flux 
(based on assumed alpha) > 
Available Groundwater 
Mass Flux, then Adjust Air 
Concentration (Alpha)

Relevant for more volatile 
chemicals (vinyl chloride, 
11 DCE) dimensionless 
Henry’s Law Constants > 1

Volatilization 
Flux Groundwater

Flux
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• Sound framework for vapour pathway essential
• Health Canada alpha charts incorporate updated inputs 

based on recent science (different than CCME)
• Empirical validation models important part of process
• Wide variation in empirical alpha, for chlorinated solvents α

ranged between ~ 10-3 to less than 10-6, for petroleum 
hydrocarbons α ranged between ~ 10-4 and less than 10-6

• 90th/Max measured alpha’s for chlorinated solvent sites 
similar to or less than HC alpha’s suggesting HC alpha’s are 
reasonably protective, 90th/Max alpha’s for petroleum sites 
about one order-of-magnitude less 

• Adjustments for biodegradation, building height and mass 
flux important part of guidance

Conclusions
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