

SALT-IMPACTED SITES

Lynda Smithard, P.Eng. Dillon Consulting Limited

OUTLINE

SALT IMPACTED SITES:

- Why Are We Concerned?
- Approach to Investigation
- Remedial Options
- Salt Impacts Remedial Program Case Study

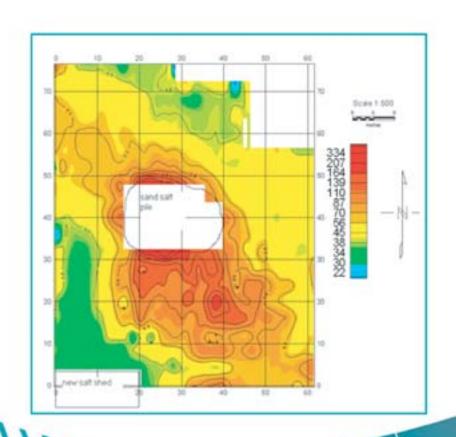
WHY ARE WE CONCERNED?

- Environment Canada Assessment Report
 estimated that approximately 4.9 million tonnes
 of road salt are released to the environment in
 Canada every year
- In August 2000, Environment Canada provisionally declared road salt as a Canadian Environmental Protection Act (CEPA) toxic substance

WHY ARE WE CONCERNED?

In February 2002, draft remedial standards involving sodium and chloride impacts in soils and groundwater were proposed under the BC Contaminated Sites Regulation

- Remedial programs at highways maintenance yards (road salt storage)
- Oil and gas exploration in Northern BC



GEOPHYSICS

EM-31

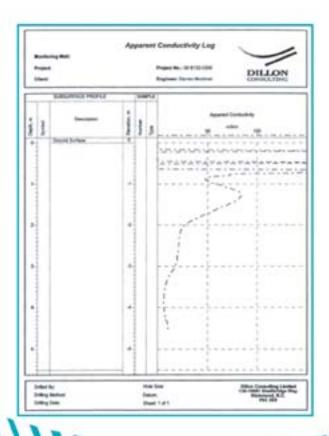
- Conductivity survey
- Contours horizontal extents of salt impacts
- Identification of "hot spots"
- Aids in boreholes/CPT placement

GEOPHYSICS

EM-39

- Down hole conductivity survey
- Vertical delineation of salt impacts
- Identification of gravity driven salt plumes
- Aids in well screen placement

Conventional Drilling


(Boreholes coupled with down hole EM-39)

٧S

Direct Push Technology

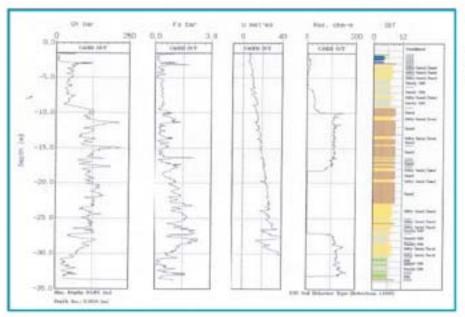
(Cone Penetration Testing)

Conventional Drilling

CONVENTIONAL DRILLING

ADVANTAGES

Can be installed in any soil conditions


DISADVANTAGES

Time efficiency

- two step process
- No in situ groundwater or soil samples

Direct Push Technology

The freshwater/saltwater wedge is easily determined from soil resistivity

DIRECT PUSH TECHNOLOGY

ADVANTAGES

- Time efficient (vertical delineation completed as hole is advanced)
- In situ groundwater sampling
- Detailed stratigraphic logs produced including resistivity data

DISADVANTAGES

- Refusal in soils with gravel and cobbles
 - Two step process
 - No in situ groundwater or soil samples

REMEDIAL SOIL EXCAVATION AND OFF-SITE DISPOSAL

 Excavated material can be screened and reserved for future winter road application

CALCIUM AMENDMENT ADDITION AND SOIL FLUSHING (IN SITU)

- Calcium amendments added to surface
- Irrigation of impacted area

 Collection of leachate in sub-horizontal catchment drains for disposal or treatment

REMEDIAL SOIL EXCAVATION AND SOIL FLUSHING (EX-SITU)

- Excavation of impacted soils
- Placement of excavated soils in a partially sub-grade,
 PVC lined cell
- Collection of salt-impacted water flushed through the cell in a perforated piping network installed beneath the cell

MONITORED NATURAL ATTENUATION FOLLOWING SOIL REMEDIAL EXCAVATION

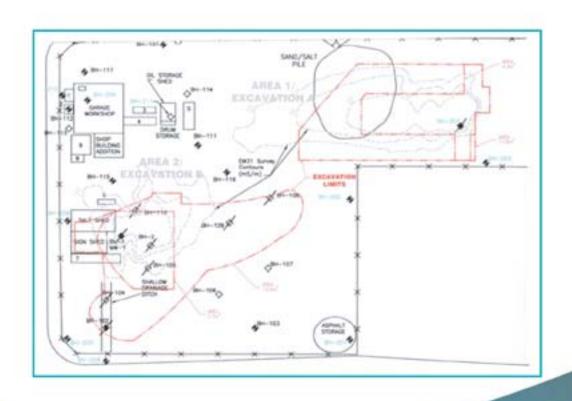
Preliminary risk assessment required

- Source removal through excavation of soil hot spots
- Natural precipitation/flushing events remediate remaining soil and groundwater impacts
- Quarterly monitoring of groundwater perimeter wells

EVAPORATION

- Heating and evaporation of extracted groundwater and/or leachate collected from soil flushing activities
- · Collection of salt in trap beneath evaporation unit
- Potential re-use of salt in winter road application

REVERSE OSMOSIS (RO)


- Extracted groundwater and/or soil treatment leachate passed through a small RO unit
- Separation of salt from water at ambient temperatures
- RO system pressure requirements increase with dissolved salt concentrations
- Generally more expensive than evaporator units

BACKGROUND

- Subject site has been a highways yard since the late 1960's
- Sodium chloride used in winter road de-icing was historically stored in two locations: 1 inside a salt shed; and 2 in an uncovered sand/salt pile
- Extensive soil and groundwater impacts were documented in the vicinity of both storage locations (PSI and DSI)

REMEDIAL APPROACH

- 1 EM-31 and EM-39 Surveys
- 2 Installation of Perimeter Monitoring Wells
- 3 Remedial Excavation and Off-Site Disposal

REMEDIAL APPROACH

4 Construction of New Salt Shed with Leachate Collection System

REMEDIAL APPROACH

- Monitored natural attenuation of groundwater (pre and post excavation groundwater monitoring)
- 6 Development of a conceptual groundwater model
- 7 Overview Ecological Risk Assessment

REMEDIAL RESULTS

- Decreasing trends in sodium and chloride concentrations were observed in site perimeter wells.
- The observed trends demonstrated that soils were being flushed by natural infiltration events and/or seasonal fluctuations in the water table.

REMEDIAL RESULTS

- The Overview Ecological Risk Assessment concluded that the site posed little to no risk to down gradient receptors based on sodium and chloride concentrations in perimeter wells.
- The environmental liability of the site was demonstrated to be low and the site was subsequently sold.