Toxicity Testing to Evaluate Bioremediation Endpoints at Upstream Oil and Gas Facilities

RemTech 2003

October 16, 2003

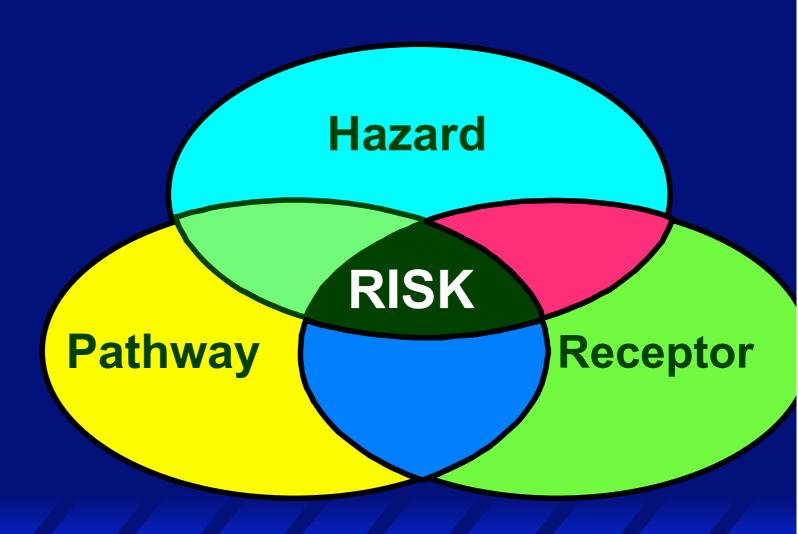
Sean Murphy* and Jeff Charrois
Komex International Ltd. Edmonton, Canada
Dept. of Public Health Sciences, University of Alberta,

Outline

- Background
- Objectives
- Methods
- Results
- Conclusions
- Questions

Petroleum Hydrocarbons

- Petroleum Hydrocarbons (PHC):
 - mixture of organic compounds derived from geolog substances (e.g., gas, diesel, crude oil)
 - lower MW PHC: more mobile
 - higher MW PHC: more persistent
- PHC composition at a given site:
 - Function of source, age of release, extent of degrada or transformation, weathering and site-specific factor (geology, hydrogeology etc.)


PHC Contaminated Sites

- Canada (CCME, 2000):
 - >10,000 PHC Contaminated Sites
 - Liability: ~ \$10 B
- Canada Wide Standards:
 - 3-Tiered standard
 - Soil/subsoil
 - Human/environment
 - RA/RM

Elements of Risk

CCME PHC Canada Wide Standard

- PHC Fractions (CCME, 2000)
 - F1 (C6-C10)-BTEX
 - F2 (>C10-C16)-PAHs
 - F3 (>C16-C34)-PAHs
 - F4 (C34+)
- Standards are a function of land use, exposure pathways, soil texture (fine vs. coarse) and depth o contamination (surface vs. subsurface)

CCME PHC Canada Wide Standard

- PHC Fractions (CCME, 2000)
 - F1 (C6-C10)-BTEX
 - Coarse (HH: vapour inhalation)/Fine-(HH: gw in
 - F2 (>C10-C16)-PAHs
 - Coarse and fine-grained (HH: groundwater ingest
 - Coarse-grained: Aquatic Life (water body adjace)
 - F3 (>C16-C34)-PAHs: Direct soil contact (EH)
 - F4 (C34-C50)/F4G (C50+): Direct soil contact (EH

Upstream Oil and Gas Facilities

- Sources of PHCs:
 - Flare pits, Drilling Sumps, Wellheads, Tank Farms and Pipelines
- Hydrocarbons become issue at most Sites, based or assessment data vs. remediation guideline
- Most sources: PHC F3 (>C16-C34) CWS becomes remediation target

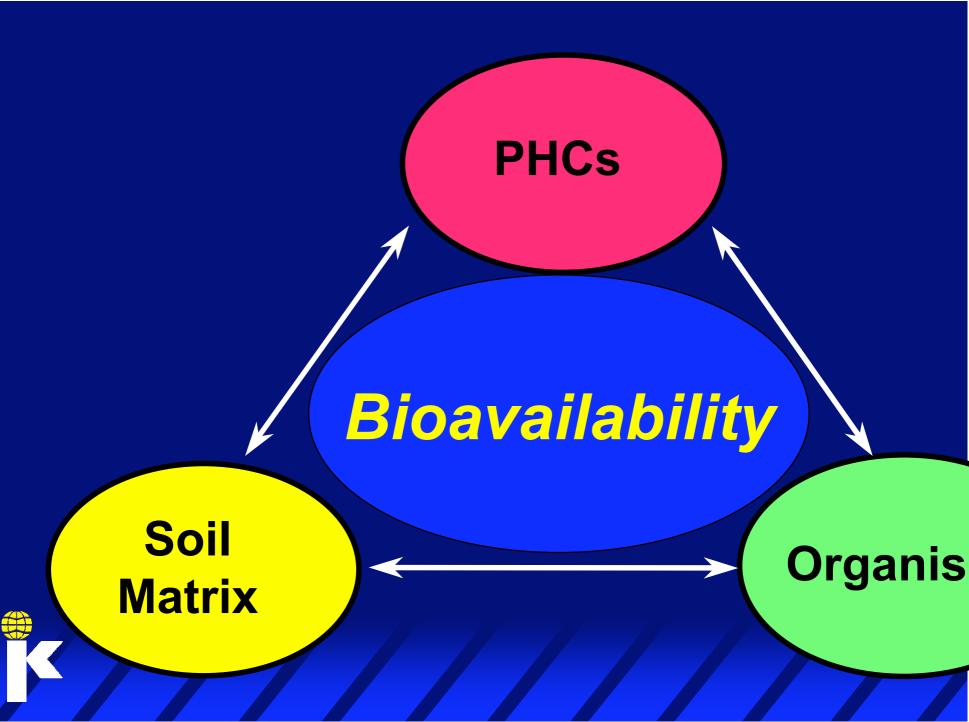
The Nature of PHC F3

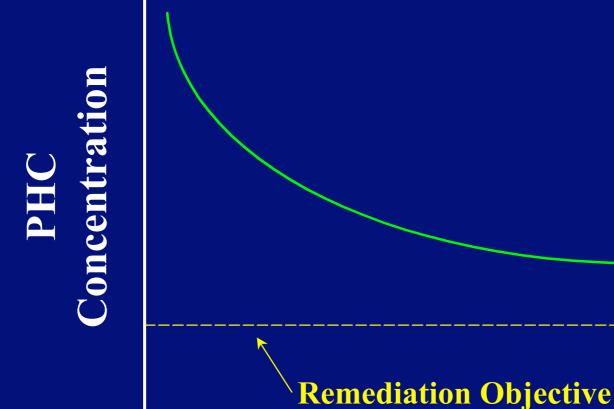
- PHC F3 (>C16-C34): broad range of solubility, K
 - >C16-C21 subfraction (more soluble/toxic)
 - >C21-C34 subfraction (less soluble/toxic)
 - Broad range of physico-chemical properties a toxicity

CCME Ecosoil Contact Guideline

- CCME CWS ecosoil contact based on toxicity test (acute, chronic, subchronic) with distillates of Federated Crude Oil
 - Simulates fresh spill of individual fraction
- Federated Crude Oil (PHC F3):
 - >C16-C21 subfraction (45 %)
 - >C21-C34 subfraction (55 %)

Biodegradation of PHC


- Bioremediation of PHC contaminated media:
 - cost-effective
 - practical: can be used in situ or ex situ
 - results in mineralization or transformation of
- In many cases, residual PHC concentrations remain excess of Tier I remediation endpoints particularly PHC F3


Aging and Bioavailability of PHC

- Biodegradation of more labile (available) PHC lear a residual PHC fraction that is much less available mobile (*biostabilization*)
- Aging phenomenon: hydrocarbon availability within geosorbents decreases with time (e.g., earthworm uptake and bacterial mineralization)
- Chemical extractability versus bioavailability: how you define risk-based endpoints??

The "Aging Effect"

Questions

- Is the addition of freshly added hydrocarbons to so indicative of toxicity of weathered, aged hydrocarb
- Are remediation endpoints that we are trying to acl appropriate, what is the risk if we don't meet the g
- Is this mixture used in CCME CWS development representative of PHC F3 compositions found in Alberta?

Research Objectives

Using a battery of toxicity tests, we evaluated:

- Toxicity of residual PHC in four biotreated se
- CCME PHC Standards against the measured toxicity of weathered biotreated PHC contaminated soils
- Composition of PHC F3 within biotreated so vs. Federated Crude used in CWS development

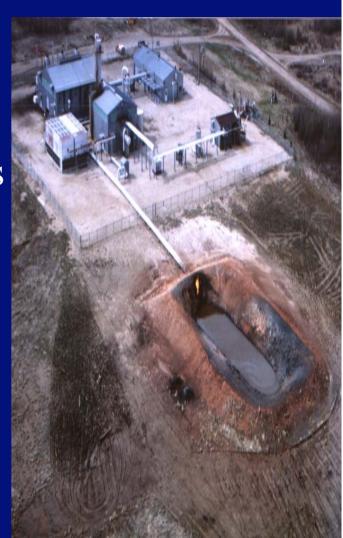
Experimental Design

Biotreated PHC Soils Reached Plateau

Soil Characterization

Microtox

Seed Germination


Earthworm

Risk Characterization

Materials and Methods: Soils

PHC Contaminated Soils:

- Oil and Gas Facilities (Alberta)
- Soils A, C and D: drilling wastes
- Soil B: crude oil
- Control Soil
- PHC degradation in all soils reached plateau above Tier I

Materials and Methods: Physical-Chemical Characterization

Soil Characterization:

- particle size distribution
- pH, EC, main soluble ions
- Organic Matter
- CCME PHCs
- Polycyclic aromatic hydrocarbons
- Metals and inorganics

Bioassays and Screening Level Assessment of Earthworm Tissues

- Microtox®
- Seed Germination
 - Oat (Avena sativa) & radish (Raphanus sativa)
- Earthworm (*Eisenia fetida*)
 - acute (14 days)
 - subchronic exposures (10 weeks)
 - worm tissues exposed to Soils A, D and cont
 - FAC (HPLC), PHC and metabolites (GCM

Results: Physical-Chemical Properties

	Soil A	Soil B	Soil C	Soil D	Con
Texture	Fine*(CL)	Fine (CL)	Fine (CL)	Fine (L)	Fine
S/Si/C (%)	41/33/26	35/38/27	24/41/35	47/30/23	44/38
OM (%)	4.0	5.8	3.8	2.1	2.
рН	7.5	7.5	7.2	7.2	7.
EC (dS/m)	1.47	2.19	0.96	2.72	0.5
Metals	BC	BC	BC	BC	-

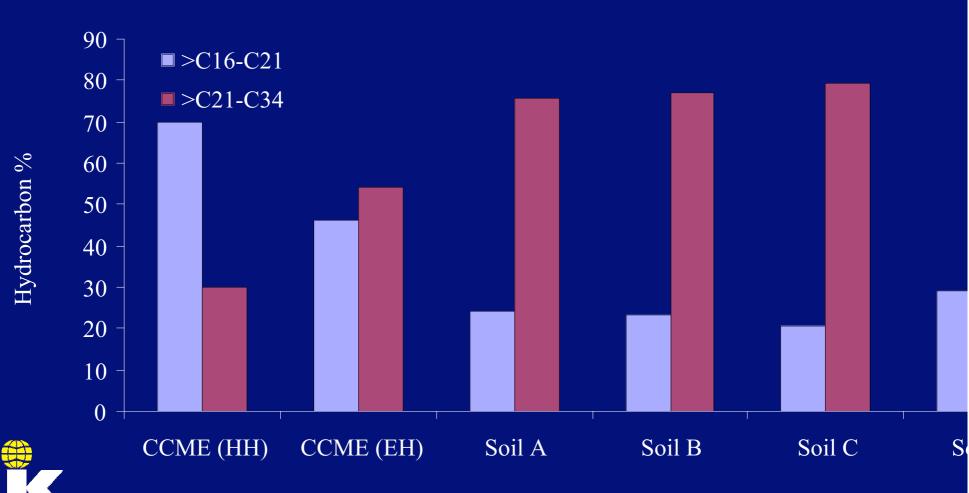
^{*}Defined as having > 50% by mass, particles < 75 um (D_{50} < 75 um) BC-below criteria

Results: PHCs following Biotreatmen

PHC	CWS	Soil A	Soil B	Soil C	Soil
F1 (C6-C10)	260	-	-	-	
F2 (>C10-C16)	900	289	117	153	2
F3 (>C16-C34)	800	3693	1127	1113	19
F3(C16-C21)		896	261	231	5
F3(C21-C34)		2797	864	882	14
F4 (>C34+)	5600	2180	726	921	8

- 2) Historical data indicated that PHC F1 was below detection (< 5 mg/kg).
- 3) All units mg/kg (dw)

^{*}Notes: 1) CCME standard for agricultural land use, fine textured surface soil.


Results: PAHs following Biotreatment

PAHs	SQG	Soil A	Soil B	Soil C	Soil D
Naphthalene	0.1	0.09	< 0.05	0.07	0.10
Phenanthrene	0.1	0.22	< 0.05	0.05	0.13
Chrysene	-	0.12	< 0.05	< 0.05	0.09
Fluorene	-	0.10	< 0.05	< 0.05	0.05
Other PAHs		< 0.05	< 0.05	< 0.05	< 0.05

^{*}Note: 1) CCME soil quality guideline (SQG) for agricultural land use applied.
2) all units mg/kg (dry weight)

Results: PHC F3 Composition Following Bioremediation

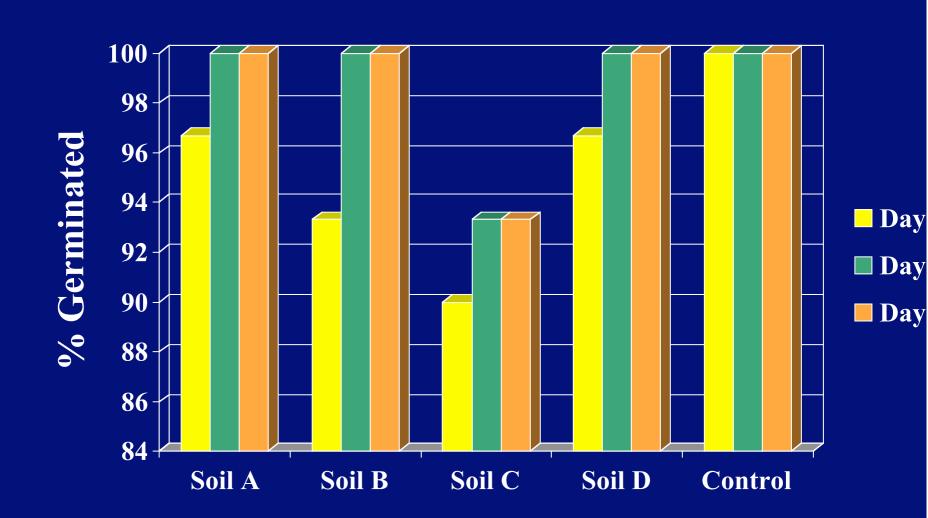
Toxicity Results: Microtox Bioassay (% Survival)

	Soil A	Soil B	Soil C	Soil D	Contro
EC ₅₀ (5 min)	>100	>100	>100	>100	>100
EC ₂₀ (5 min)	>100	>100	>100	>100	>100
EC ₅₀ (15 min)	>100	>100	>100	>100	>100
EC ₂₀ (15 min)	>100	>100	>100	>100	>100

*Note: 50% diluted soil data not shown, however, data are the same as 100% contaminated soils.

Results: Earthworm/Plant Bioassay

Worms (% Survival)


	Soil A	Soil B	Soil C	Soil D	Control
14 days	100	100	100	100	100
10 weeks	100	100	100	100	100

Plants (% Germination)

	Soil A	Soil B	Soil C	Soil D	Control
Radish	100	100	100	100	100
Oats	100	100	93.3	100	100

Results: Seed Germination - Oats

Screening Level Assessment of Earthworm Uptake

HPLC/Fluorescence Detection

- No clearly distinguishable FACs
- Could not discriminate earthworms exposed to PHC from control

GC/MS Analysis

- Complex but similar total ion chromatograms for all samples
- Trimethylnaphthalene and two isomers of ethoxypheny
 acetone found in all samples.

Discussion

- Residual PHC F3 concentrations in all soils in excess of standard: *chemically extractable PHC*
- No observed toxicity (Microtox[®], seed germination, earthworms) from exposure to PHC contaminated soils: bioavailable fraction of PHC
- Incorporation of weathered hydrocarbon data should be considered
- Results of screening level assessment indicate better con (e.g., OECD Soil) necessary for evaluation of earthworn tissues

Discussion

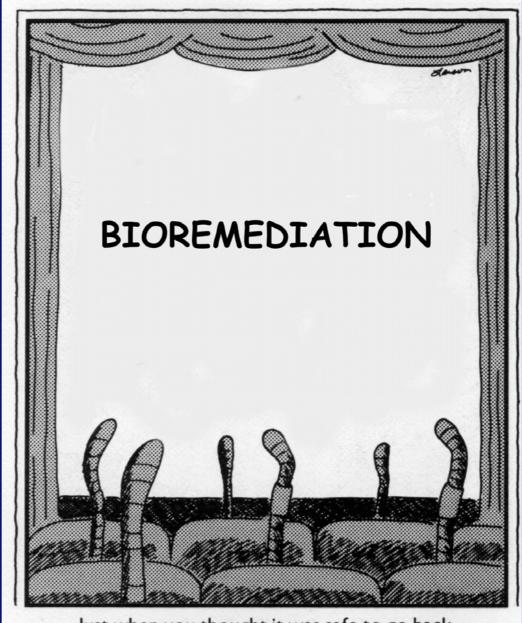
- Achieving PHC F3 (>C16-C34) standard may prove difficult through bioremediation; however measured toxicity not observed
- CWS for PHC F3 may not accurately represent risk to ecological health:
 - Assumes fresh spill of distilled fraction
 - Assumes F3 composition with high level of C16-C21 subfraction vs. study soils
 - Federated Crude not representative of all hydrocarbon mix
 - Does not consider interactions amongst fractions, weather and limitation in bioavailability

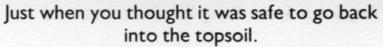
Conclusions

 Risk of toxicity from weathered PHC (F3) in biotreat loam to clay loam soils may be overestimated by curr CCME Tier I PHC standards

• Coupling site-specific toxicity data with chemical characterization can assist in achieving protective, an obtainable remediation endpoints

Future Directions


- The refinement of standards requires data relating PHC concentrations in aged samples containing complex hydrocan mixtures to measured toxicity in soil organisms
- Evaluating CCME PHC standards (particularly F3) versus additional weathered biotreated PHC data
 - PTAC in process of completing
- Inventory of other products (e.g., crude oils) to see if Federat Crude Oil composition representative
- Appropriate controls for earthworm toxicity studies (OECD)



Acknowledgments

- Komex International Ltd., Edmonton, Alberta
- Norwest Labs- for performing chemical and physical analyses of soils
- EnviroTest Labs- for performing earthworm analyses
- Bill McGill (UNBC) and Sumithrai Vasanthan (University of Alberta)- who performed seed germination and earthworm bioassays

