Latest Findings in In-situ Remediation of Hydrocarbon Impacted Soils using Hydrogen Peroxide

M. Mahmoud, G. Achari, P. Xu and R.C. Joshi U of C, Calgary, Alberta

Background

- Hydrogen peroxide (H₂O₂) a strong oxidant is used to cleanup residual contaminants adjacent to structures with restricted access (Mahmoud et al. 2000)
- $\bullet H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH^- + OH^-$
- $OH \cdot + C_x H_y \rightarrow H_2 O + CO_2 + heat$
- $\bullet H_2O_2 + Fe^{3+} \rightarrow Fe^{2+} + H^+ + HO_2$
- \bullet OH· + Fe²⁺ \rightarrow OH- + Fe³⁺
- $\bullet \text{ HO}_2 \cdot + \text{Fe}^{3+} \rightarrow \text{ O}_2 + \text{ H}^+ + \text{ Fe}^{2+1}$
- $\bullet H_2O_2 + OH \to H_2O + HO_2 \cdot$

Chemical Storage Room

T

Constant State

Restricted Access

H₂O₂ Injection

Assessing required concentration

Laboratory Program

Impact of hydrogen peroxide on heave of soil

- Investigate major process variables in use of hydrogen peroxide for remediation
 - Influence of iron catalyst
 - Use of surfactant
 - Multiple applications of hydrogen peroxide
- Study the distribution of hydrogen peroxide in soil upon injection
- Impact of hydrogen peroxide injection hydraulic conductivity

Test Conditions

- Major contaminant diesel
- Heave Study
 - Sandy soil (with 0.55 % organic content)
 - concentrations of 0, 2000, and 5000 mg/kg
 - H₂O₂ concentrations of 5%, 10%, 15%, 25% and 30% by volume
- Other Experiments
 - Three soil types
 - Sandy silt (UC soil; 63.9% sand, 26.1% silt and 7.9% clay, 0.4% orgs., 1.9% iron content
 - Silty clay (SH soil; 44% sand, 23.2% silt and 31.4% clay, 1.87% orgs., 1.55% iron content)
 - Ottawa sand (as control)
 - concentrations of 0, 500, 1000, 5000 & 10,000 mg/kg
 - H₂O₂ concentrations of 5%, 10% and 20% by volume

Characteristics of Diesel

No. 2 diesel: C9 – C20, 160 °C and 360 °C

Major physical properties

Major chemical compounds

Index	Specifications
Density (g/cm ³)	0.82 - 0.87
Viscosity (cSt)	1.3 - 4.1
Solubility (mg/L)	2.3 – 8.3 (Distilled Water) 2.8 – 39.1 (Fresh water)
Volatility (%)	57 (5 day evaporation @22 C)

Compounds	Percent by weight
Alkanes (normal, branched & cycloalkanes)	70 - 80
Aromatics	20 - 30

Results – heave of soil

Initial volumetric change in specimens

D₂ Concentration (%

Results – heave of soil

Long term volumetric change in specimens

H₂O₂ Concentration (%)

Results - Major process variables

- **6** H_2O_2 consumption
- 6 Soil buffering capacity and pH effect on DROs degradation
- **6** Iron catalysts and mineral iron oxides
- 6 Gas quantification/qualification
- 6 Enhancement of diesel degradation

H₂O₂ consumption during remediation of Ottawa sand

Low soil pH – Beneficial but difficult to attain

◆ Forcing a decrease in ◆ Impact of soil pH on soil pH

 \rightarrow Ottawa sand (OS soil)

Impact of External Iron Addition to UC and SH soils

H₂O₂ concentration (%)

Impact of External Iron Addition to Ottawa Sand

Degradation Efficiency and Gas Production

Diesel Degradation
 Efficiency

 Oxygen generation – indication of scavenging of H₂O₂

Effect on Diesel Concentration on DRO removal

 \diamond 10 ml of 10% H₂O₂ used

- - - Sandy silt (UC soil)

Diesel concentration (mg/kg)

Degradation efficiency – ratio of H_2O_2 consumed to diesel degraded

♦ Sandy silt

♦ Silty clay

Surfactant Enhanced Diesel Degradation

Impact of Multiple Applications

♦ Sandy silt

- One application
- Multiple application

- 5,000 mg/kg diesel
- \triangle One application
- Multiple application

H₂O₂ Infiltration & Injection

Breakthrough Curve

Injection Test Results

Injection Test Results

♦ Two major concerns

– Uneven distribution of H_2O_2 and remediation

 $-H_2O_2$ making its way to the top along the injector due to "refusal"

Hydraulic Conductivity Results

- Hydraulic conductivity of H₂O₂ is 30 times lower than that of water
- Reason gas generation and increased resistance due to gas pressure
- Surface application not very effective due to reaction at the surface

Conclusions

Soil volume changes encountered

♦ Heave

- Below a 15% H₂O₂ concentration, treated soil experience immediate settlement
- Settlement decreases as H_2O_2 concentration increases
- Above 10% H₂O₂ concentration immediate settlement is followed by rebound
- At 30% H₂O₂ concentration and high diesel content significant volume increase (heave) takes place

Conclusions

Process variables

- Presence of iron necessary
- Concentration and volume of H_2O_2 are both important process variables
- High concentration of H_2O_2 had higher degradation, at a lower efficiency
- Soil pH, if it can be lowered, would increase degradation
- Optimum dosage for remediation: 8 mL of 5% H_2O_2 (or 4 mL of 10% H_2O_2) per gram of 5000 mg/kg diesel contaminated soil

Conclusions

- SDS improves the treatment efficiency when SDS concentration > than CMC
- Multiple application somewhat increased degradation efficiency
- Injection and Infiltration Tests
 - Uneven distribution of H_2O_2 during injection
 - Refusal due to reaction and gas production may be concern
 - Hydraulic conductivity lowered by gas production

Acknowledgements

Hatem Mohamed, Matrix Solutions
Nichols Environmental Ltd.
NSERC for funding the project