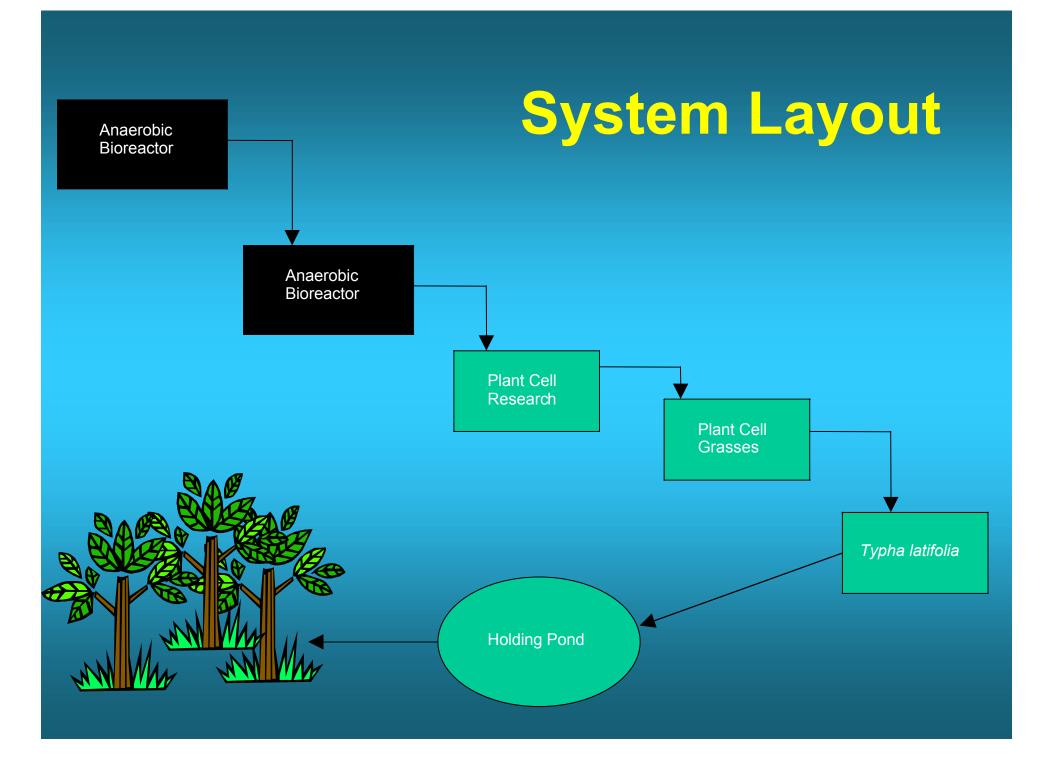
Multi-Stage Treatment System for Removal of Heavy Metal Contaminants

Environmental Services Association of Albe Remediation Technologies Symposium 200

Banff Alberta, October 16 – 19, 2002

Al MattesDoug GouldNature WorksCANMET


Bill Duncan Teck Cominco

Presentation Outline

- Describe design and construction details
- Discuss microbial reactions
- Describe testing protocols and assays
- Summarize results
 - Flow rates
 - pH and dissolved oxygen
 - Metals removed
 - Bacterial activity
 - Role of plants

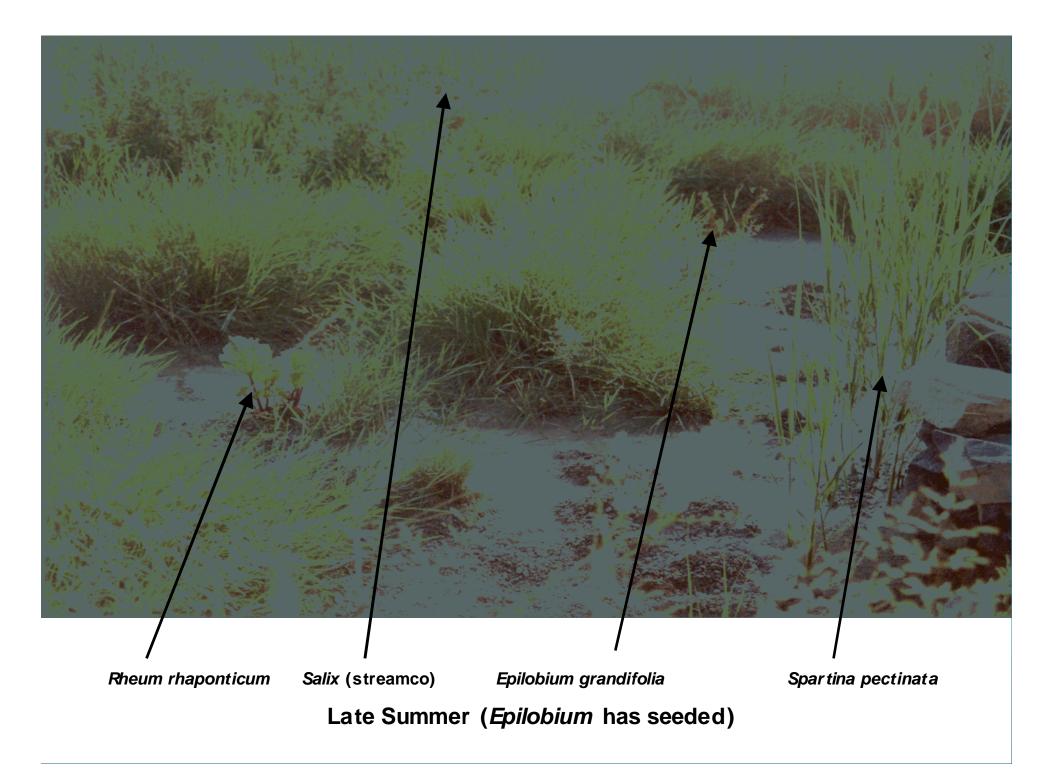
Construction Details

- Initial phase constructed in 1997 as three gravel bed free-surface flow wetlands treatment cells
- Bench scale testing showed need for pre-treatment to reduce metals
- Anaerobic bioreactor added in 1998
- Second anaerobic bioreactor added in 2000
- System winterized in 2000
- Sand Filter added in 2001



Anaerobic Cell Design

- Two formulas used to size cells based on metal loading.
- Volume (*rule of thumb*) based on removal of 0.3 mol /m³ of biosolid
- Volume = $(155 \text{ mol/d})/((0.3 \text{ mol/m}^3\text{d}))$
- Area (*rule of thumb*) 10 20 m²min/L; pH dependent with higher pH requiring lower loading
- Area = $((20m^2min/L)X \ 13.9 \ L/min)$


Microbiological Chemistry

- Sulphate-reducing bacteria (SRBs) using carbon as a substrate can reduce metal sulphates to metal sulphides by:
- $2CHO + SO_4^{=} + 2 H^+ \rightarrow H_2S + 2HCO_3^{-}$
- $Zn^{2+} + H_2S \longrightarrow ZnS + 2H^+$

Testing Protocols & Assays

- Accumulating flow meter gives daily and total flow to system; System flow through set manually
- Thrice weekly assays of water at 8 points for metal content (Zn, Cd, As)
- pH and dissolved oxygen completed for each sample
- Labelled plants sampled monthly (June Sept.) for metal content
- Anaerobic samples of bioreactors taken twice/year
- Rainfall, temperature and evaporation rate monitored

Flow Rates

Time Period	Total Summer Flow	Mean Daily Flow	Total Evaporated	Winter Flow	Year's Total
07/06/00 to 20/01/01	2,354,209	16,348	556,619	486,000	2,840,209
01/05/01 to 20/01/02	2,615,612	15,327	570,876	486,000	3,101,612

Mean pH and D.O. levels

Period	Parameter	Input	Anaerobic one	Anaerobic two	1 st Plant	2 nd Plant	Typha
07/06/2	000 – 20/01/	2001					
(n = 74)							
	рН	5.13	6.76	6.94	6.86	6.78	6.83
	D.O.	6.24	3.0	2.10	1.82	1.85	2.99
01/05/20	001 – 08/08/	2001 * <mark>/</mark>	Data given or	nly to Aug 8 th	, pH adjus	stment b	began to
(n = 55)		fa	ail.				
	рН	5.52	6.80	7.12	7.04	7.12	7.28
	D.O.	3.88	2.44	3.06	1.40	1.80	3.65

Mean Metal Removal 07/05/00 - 20/01/01 (n = 56)

Assay Point	Arsenic Level (ppm)	% Reduction	Cadmium Level (ppm)	% Reduction	Zinc Level (ppm)	% Reduction
Input	39.4		5.3		395.9	
Anaerobic 1	9.2	76.5	1.9	63.2	226.3	42.9
Anaerobic 2	10.5	+ 13.6	0.3	83.2	102.6	54.7
Cell 1	8.4	19.8	0.2	21.2	63.8	37.8
Cell 2	8.3	1.3	0.2	23.1	53.6	16.1
Cell 3	1.9	76.8	0.03	85.0	14.2	73.4
Final Pond	1.6	15	0.02	33.4	11.4	19.9
Total %		95.80		99.50		97.10

Mean Metal Removal 14/05/01 - 20/01/02 (n = 72)

Assay Point	As Total (ppm)	% Reduction	Cd Total (ppm)	% Reduction	Zn Total (ppm)	% Reduction
Input	99.6		4.97		314.25	
Anaerobic One	28.21	71.4	2.03	59.1	128.97	59.0
Anaerobic Two	5.67	80.0	0.37	81.8	99.62	22.8
1 st Plant	1.59	80.4	0.04	89.1	47.01	52.8
2 nd Plant	1.11	30.2	0.04	0	39.88	15.2
Typha	1.04	6.8	0.04	0	25.35	36.4
Holding Pond	0.95	8.7	0.04	0	18.67	26.4
% Reduction		99.1		99.2		94.0

Metal Removal by Bacteria

Metal Removal in Anaerobic Bioreactors 14/05/01 – 20/01/02

Cell	As Total (ppm)	% Removed in Cell	Cd Total (ppm)	% Removed in Cell	Zn Total (ppm)	% Removed in Cell
Anaerobic One Input	99.6		4.9		314.3	
Anaerobic One Output	28.2	71.4	2.0	59.2	129	58.6
Anaerobic Two Output	5.7	80.0	0.4	81.8	99.6	22.8
Total % Removed		94.3		92.6		68.3

Microbial Populations

	Microbial Popula	ations, #/g or #/ml* (Aver	age values)
Location	Fermentative Bacteria	Sulphate Reducing Bacteria	Iron Reducing Bacteria
First cell: surface	1.3 x 10 ⁴	1.3 x 10 ⁶	5.1 x 10 ⁴
First cell: 5-20 cm	2.2 x 10 ⁶	7.4 x 10 ⁵	6.3 x 10 ⁴
Second cell: surface	6.4 x 10 ⁴	8.2 x 10 ⁶	2.1 x 10 ⁶
Second cell: 5-20 cm	1.1 x 10 ⁶	1.7 x 10 ⁷	4.1 x 10 ⁶
Plant cell #1 outlet *	n.d.	3.3 x 10 ⁵	7.9 x 10 ³
Plant cell #2 outlet *	n.d.	3.1 x 10 ⁴	7.9 x 10 ⁴
Typha cell outlet *	n.d.	3.3 x 10 ⁵	7.9 x 10 ³
Holding pond *	n.d.	2.7 x 10 ⁵	3.3 x 10 ⁵

Metal Removal by Plants

Plant Species	N =	Zn (ppm)	As (ppm)	Cd (ppm)	Pb (ppm)	TOTAL
Epilobium grandifolia	63	2249	157	13	74	2493
Rheum rhaponticum	19	2281	130	14	33	2459
Deschampsia	6	1747	61	11	65	1884
Typha latifolia	46	423	29	10	35	1313
Salix (ssp streamco)	24	1021	9	5	19	1054
<i>Salix (spp</i> native)	16	951	18	12	21	1002
Comparison						
Grasses (various)	19	370	6	1	6	385
Salix (Native)	43	361	6	1	6	374
Typha latifolia	86	361	6	1	6	374
Epilobium grandifolia	24	351	5	1	6	363

Conclusions

- A biologically based treatment system to remove heavy metals from landfill leachate has been constructed and operated year-round.
- Anaerobic bioreactors can remove more than 90% of metals.
- A list of plants that are metal tolerant and in some cases capable of accumulation has been developed.
- Some problems occurred with pH adjustment mechanism that resulted in reduced Zn removal efficiency. This has been solved by a design change.

Acknowledgements

- Teck Cominco Metals Limited
- NRC through the IRAP program
- Environment Canada
- BC Government (First Jobs in Science)
- University of Guelph
- CANMET