# Assessment and Remediation of Chloride Impacted Groundwater: A Case Study

Gordon MacMillan, Matrix Solutions Inc. Robert Pockar, Matrix Solutions Inc. Brent Bowerman, Canadian Natural Resources Ltd.















VERTICAL CHLORIDE DISTRIBUTION MAP



## **Remediation Objective**

Protect wetland from further impact by:

1) Capturing chloride impacted groundwater and prevent elevated chloride from discharging to the wetland.

2) Removing dissolved chloride from the subsurface









#### **GROUNDWATER INTERCEPTION TRENCH Predicted Groundwater Production Rate**



GROUNDWATER RECOVERY SYSTEM PROCESS AND INSTRUMENTATION DESIGN

Malmer Solutions Inc.

## **Remediation System Performance**



- System has been in operation since July 2002.
- Initial groundwater recovery rate of approximately 5 m<sup>3</sup>/day.
- Recovered groundwater has an average concentration of 9,000 mg/L.
- Average chloride recovery rate of 50 Kg/day.
- Future work includes establishing site specific remediation criteria.

## **Assessment and Remediation Review**

- Clearly identify the purpose of the project:
  - Fresh groundwater
  - Aspen stand
- Detailed assessment proved invaluable throughout each stage of the project:
  - Explore possibility of natural attenuation
  - Trench and well depth and locations
  - Recovery rates
- Simple numerical simulation is a valuable tool for:
  - Evaluation of the remediation system
  - Estimate of capture zones
  - Estimation of recovery rates for pump and line sizing