Bioremediation of Hydrocarbon Impacted Soils in Central Alberta

Remediation Technologies Symposium

Alfredo Cárcamo and Jeff Powers ARC Inc. Environmental Services Phone: (403) 444-4922or 543-1945

18 October, 2002

Presentation Overview

Review of Bioremediation
 Background on Petroleum Hydrocarbon Impacts
 Case Studies Scenarios

 Soil characterization
 Treatment technique
 Confirmatory analyses

 Summary
 Benefits of land treatment;
 When is bioremediation appropriate

Bioremediation relies on naturally occurring microorganisms to breakdown organic molecules such as petroleum hydrocarbons

Bioremediation builds on techniques used in composting and agriculture

Microbial Activity

- Suitability of biodegradation of soils is based on characteristics including:
- Low to medium salinity
- Metal content below regulatory criteria
- pH between 5 and 9
- Moisture content approximately 60% field capacity (20-40% moisture)
- Carbon: Nitrogen: Phosphorus (100:10:1)

Composting and Bioremediation

Compost Systems

- Available Carbon and Nitrogen from fresh residues
- Microbial population is diverse
- Wide array of feedstock that can be used in recipe

Bioremediation Challenges

- Hydrocarbons may be unavailable
- Lack of hydrocarbon degraders;
- Naturally occurring hydrocarbons in amendments

Hydrocarbon impacted soils originated and were treated at active upstream oilfield sites.

Soil Characterization to Evaluate Treatment Potential

- During a phase II assessment, soil analytical data compared to generic criteria (AENV TIER I)
- Consideration to build a treatment cell –background location evaluated;
- Site evaluated for environmental receptors;
- Impacted soil characterized for
 - Recalcitrant compounds;
 - Salts and metals;
 - Organic halides and polyaromatic hydrocarbons;

Case Study 1 Former Flare Pit Impacted Material Treated On Lease Using A Bulldozer Equipped With A Cultivator

Soil Quality Compared to AENV 1994 Criteria

- Soil parameters reported hydrocarbon impacts including:
- Benzene 0.15 mg/kg soil;
- Toluene 1.56 mg/kg soil,
- Ethylbenzene 2.17 mg/kg soil;
- Xylenes 9.91 mg/kg soil; and,
- Total Petroleum Hydrocarbons up to 6170 mg/kg soil.

Figure 1. Case I Comparison of Alberta 2001 Criteria and PHC Fractions After Land Treatment Complete.

Land Treatment Using Bulldozer with Cultivator

- Approximately 3,000 m³ were treated in a period of 18 months
- Petroleum hydrocarbons were below criteria
- Land treatment pad was reclaimed
- No additional land was required for on site treatment

Case Study 2: Biopiles Aerated with Mixing Unit Petroleum hydrocarbon impacted soil: Benzene 0.14 to 0.23 mg/kg soil; Toluene below criteria, Ethylbenzene 2.17 mg/kg soil; Xylenes 1.36 mg/kg soil; and, Total Petroleum Hydrocarbons up to 1,600 mg/kg soil.

Treatment Summary

- Build treatment pad on site
- Use track hoe equipped with mixing unit to aerate biopiles
- Add amendments NPK to stockpile
- Stockpile soil in biopiles 1.5 m high;
- Conducted confirmatory sampling in sections of treatment pad

Confirmatory Analyses

- Benzene, Toluene, Ethylbenzene, Xylene, were all below AENV 2001 Criteria
- PHC Fractions (F1 to F4) were below AENV 2001 Criteria
- Addition of nutrients raised the EC above 2.0 dS/m;
- Loss of hydrocarbons through volatilization and degradation was not quantified

Extractable Hydrocarbons

Carbon	Boiling	Before	After
Chain	Range	Turning	Turning
	°C	mg/kg soil	mg/kg soil
C11-C12	196 to 216	17	<1
C16-C17	271-287	38.9	16
C30-C31	441 to 449	25.5	27
ADC			

Bioremediation works with some of the oldest organisms on earth

Summary

- On site land treatment in central Alberta conducted in active oil field sites using two different technologies;
- Both achieved PHC levels below regulatory criteria;
- Land treatment is based on one time application
- Several other equipment types are available including windrow turners, roto-tillers, allu-bucket

Benefits of bioremediation

- Reduced transportation and disposal fees; soils are handled more due to turning;
- Soils can be treated and used as industrial fill;
- Cost are about \$50-60 /m³;
- Suitable for remote sites where trucking cost can be quite expensive

Bioremediation is appropriate if

- Amount of soil can be treated within existing lease or additional land is available;
- Treatment can be done within 2-3 years;
- Treatment pad can be located away from sensitive environmental receptors

Select land treatment pad away from environmental receptors

Land treatment can give you trouble if you don't check below the surface! Look closely at your analytical data.