In-situ Containment and Treatment of a Free Phase Hydrocarbon Plum Beneath Plant Infrastructure

M. Brewster¹, S.Penny¹, B.Odell¹, and T. Jorgensen-Nelson²

¹ Komex International Ltd.

² Confidential Employer

Komex International Ltd.

Environmental Problem

Hydrocarbon free product was detected in Liquefied Petroleum Gases (LPG) Recovery Area at an Alberta gas plant.

⇒ Approximate area of 3,100 m² with hydrocarbon free product on water table.

Plan View of Site

Site Description

Plume located within the process area and straddles two hydrogeological units.

Site Description Continued

- Source area beneath the process facilities consists of granular fill. (K = 10⁻⁵ m/s)
- ⇒ Approximately 10 m downgradient gravel thins out to native till. (K = 10⁻⁸ m/s)
- Groundwater surface located approximately 1.5 mbgs in the fill and 0.5 mbgs in the till.

Remediation Goals

- No disturbance to infrastructure/operations
- Containment of free product and dissolved phase plumes
- Recovery of free product (reduce seepage)

Remediation Options

- **Excavation and ex-situ treatment**
- **⇒** Soil vapour extraction
- **⇒ Multi-phase extraction**
- **⇒ Product skimming**
- Dual phase pumping
- **⇒ Trench and gate cutoff system**

Remediation Approach

Phased in-situ approach selected:

Phase I: installation of a hydrocarbon recovery trench within the core of the plume (Installed in 1999)

Phase II: Installation of Trench and Gate System at the downgradient edge of the plume (Installed in 2000)

Phase III: Installation of additional recovery wells in gravel fill section (in progress)

Komex International Ltd.

Trench and Gate Components

- A permeable "V" shaped trench directing groundwater flow to the 'gate'
- ⇒ A free product separation gate
- **⇒** A dissolved phase treatment gate
- **⇒** A post-treatment re-infiltration gallery

Trench and Gate System - Schematte

Collection and Treatment Gates

Plan View of Trench and Gate

Komex International Ltd.

Tranch and Gate Construction

Excavation of Collection Trench

Komex International Ltd.

Environmental and Engineering Consultants

Installation of Separation Gate

Product Separation Gate

Komex International Ltd.

Environmental and Engineering Consultants

Backfilling Gravel into Re-infiltration Gallery

Komex International Ltd.

Compacting Soils around Treatment Gate

Komex International Ltd.

Dissolved Phase Treatment Gate

Komex International Ltd.

Separation and Treatment Gates

Komex International Ltd.

Installing Connector Pipe

Komex International Ltd.

Collection Trench

Komex International Ltd.

System Operation

- **⇒** System was constructed in Fall 2000.
- ⇒ Has been operating since Spring 2001.
- System was designed to operate continuously for 12 months per year.

Performance Review

Evaluated via the following metrics:

- product recovery volumes in the product separation gate; and.
- groundwater quality before and after treatment in the dissolved phase treatment gate.

Free Product Recovery

- ⇒ To date, there has been no significant entry of free product in the Separation Gate.
- ⇒ A fairly continuous hydrocarbon sheen is observed in the gate.

Plan View of Trench and Gate

Komex International Ltd.

Trench and Gate System - Water Quality

Monitoring Station	Date	Benzene	Toluene	Ethylbenzene	Xylenes	TPH (C ₃ -C ₁₀)
CDWQG		0.005	0.024	0.0024	0,3	NC
Product Separation Gate	09/24/01	0.0249	<0,0009	<0.0009	0.223	0.6
	11/13/01	0.022	<0.002	<0.002	0.292	1.2
	06/27/02	0.0552	0.0108	<0.0004	0.186	1.2
Treatment Gate	09/24/01	<0.0004	<0.0004	<0.0004	<0,0012	<0.1
	11/13/01	<0.0004	<0.0004	<0.0004	<0.0012	<0.1
	06/27/02	<0.0004	<0.0004	<0.0004	<0.0012	<0.1

Komex International Ltd.

Environmental and Engineering Consultants

All units in mg/L

Summary

Achieved Remedial Goals:

- prevented further expansion of free product and dissolved phase plumes;
- treated dissolved hydrocarbons at the downgradient edge; and,
- system is well positioned to capture downgradient free product migration

