

PFAS REPLACEMENT COMPOUNDS *"The Next Generation"*

OUTLINE

- PFAS A <u>quick</u> review
- PFAS Replacement Compounds
- "Why do we (...or should we) care?"
- Sampling and Analysis
- Regulatory Standards

PFAS – GENERAL CONCEPTS

General

- Anthropogenic ("man made")
- Encompasses >3,000 substances that contain a carbon and fluorine backbone
- Diverse range of compounds with a variety of chain lengths and end groups
- Ubiquitous ("they're everywhere")
- Compounds receiving most attention:
 - Perfluorooctane sulfonic Acid (PFOS)
 - Perfluorooctanoic Acid (PFOA)
- Next most studied:
 - Perflurohexanesulfonic Acid (PFHxS)
 - Perfluorononanoic Acid (PFNA)
 - Perfluorobutanesulfonic Acid (PFBS)
- Up and comers:
 - Shorter chain PFAS, i.e., <C4
 - PFAS replacement compounds (e.g. GenX)

Chemical/Physical Properties

- Very stable and persistent do not degrade
 - C-F bonds are very strong
 - Good stability under heat and chemical stress
- · Low volatility
- Soluble in water
- Readily bind (sorb) to variety of materials (hard to predict partitioning)
- Bioaccumulation
- Some PFAS (e.g. polyfluorinated alkyl substances) can degrade/tranform to other PFAS

Conventions

- PFAS is an "umbrella term" that includes poly- and perfluorinated compounds
- PFAS is a plural noun
- The trend is to report the sulfonates as the acid, e.g.
 - PFOS: Perfluorooctanesulfonic acid rather than Perfluorooctane Sulfonate
- Perfluorinated
 - All carbons, with the exception of a terminal carbon are attached to fluorine
 - Typically saturated
- · Polyfluorinated
 - Not all carbons are attached to fluorine
 - Often represented by "precursor " compounds

PFAS – CURRENT TARGET COMPOUNDS

HO

BUREAU

PFAS – End Compounds

WHY THE NEED FOR PFAS REPLACEMENTS

2010/2015 PFOA Stewardship Program:

- Eight (8) global suppliers agree to:
 - 95% reduction in PFOA (and related precursor) levels in emissions relative to 2000 levels
 - Total elimination of PFOA (and related precursor) levels in emissions

USEPA Significant New Use Rules (SNURs)

- September 30, 2013 relating to perfluoroalkyl sulphonic acids (e.g. PFOS)
- January 21, 2015 related to perfluoroalkyl carboxylic acids (e.g. PFOA)

Environment Canada Risk Management

 Risk management strategies seek to have environmental PFOS concentrations as low as possible, prevent re-introduction to market, and address remaining uses (restrictions, exemptions, BMP etc.)

LONG CHAIN PFAS TO SHORT CHAIN PFAS

ADONA

≤C6

PFAS REPLACEMENT COMPOUNDS

GenX (Chemours) and ADONA (3M)

- Processing aids in the polymerization of polytetrafluoroethylene (PTFE) among other fluoropolymers (In English: *Trade names for man-made chemicals used in manufacturing non-stick coatings and for other purposes*)
- Potential by-products produced during other manufacturing processes, suggesting their presence in the environment before being used as a PFAS replacements
- GenX is particularly notorious because of on-going release into the Cape Fear River by the Chemours facility in Fayetteville, NC
- GenX and ADONA are probably more likely to be detected in water where fluoropolymers are manufactured
- For this reason, these two compounds are less likely to be detected where chemicals containing PFAS are actually used.

F53B

- F-53B is a trade name for a 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFAES)
- Used widely as an alternative to perfluorooctanesulfonic acid (PFOS) in the electroplating industry resulting in a high detection frequency, comparable to PFOS
- Wastewater from chrome plating industry contains high concentrations of perfluorooctane sulfonic acid (PFOS) and F53B
- F53B has been used in China by several producers as a replacement PFAS since the late 1970s as wetting agents and mist-suppressing agents in decorative plating and nondecorative hard plating
- Suggested that it is "uniquely" used in China.

WHY SHOULD WE CARE?

- Marketed by manufacturers that lower molecular weight PFAS (i.e. replacements) are less persistent, bioaccumulative and exert a decreased toxic effect
- Emerging evidence appears to suggest...perhaps "not so much"
 - PFAS replacements are persistent
 - Tend to bioaccumulate in a similar fashion to the higher molecular weight compounds they've replaced
 - While toxicity information is limited, it is being suggested^{1,2} that GenX and replacement compounds are equally if not more toxic than PFOA, the compound they are replacing
- From a practical perspective:
 - Lower molecular weight replacements are more soluble
 - Harder to remove lower molecular weight PFAS from water
 - Increased solubility = increased mobility (risk vs. hazard)

¹ Sheng et. al., *Arch. Toxicol.* (2017) 92 (1), pp 359-369 ² Gomis et. al., *Environ. Int.* (2018) 113, pp 1-9

FIELD SAMPLING

- Strict/rigorous sampling protocols
- Sampling and field quality assurance plans must address the potential for cross contamination and/or false positives
- Adsorption of PFAS onto surfaces can be rapid resulting in potential low bias in data
 - Surface-to-Volume ratio is important
 - Minimize transfers of samples
- Water for blanks MUST be PFAS free
- Close relationship with the laboratory
- Have a solid and defensible field QA program

EQUIPMENT DECONTAMINATION

- Decontaminate field sampling equipment between uses if you are not using PFAS-free disposable equipment
- If using specific equipment for decontamination (e.g. pressure washers), confirm that equipment is free of PFAS-bearing parts
- Scrubbed sampling equipment should undergo a "final" rinse with laboratory certified PFAS-free water
- Blank samples should be collected from rinse water to confirm that it is PFASfree

ANALYTICAL METHOD SUMMARY

- Water methods based on USEPA 537/533
 - SPE weak anion exchange extraction
 - LC/MS/MS
- Soil methods based on ASTM D7968-17
 - Solvent extraction/SPE weak anion exchange extraction
 - LC/MS/MS
- Industry accepted best practices:
 - LC/MS/MS
 - Isotope Dilution required for quantitation
 - No Blank correction

REPORTING

Compound			Soil			
		MDL (µg/L)	RDL ⁽¹⁾ (low) (µg/L)	MDL (low) (µg/L)	RDL ⁽¹⁾ (µg/kg)	MDL (µg/kg)
Perfluorobutanesulfonic Acid	0.02	0.0051	0.002	0.00037	1.0	0.14
Dodecafluoro-3H-4,8-dioxanonanoate (ADONA)	0.04	0.0048	0.004	0.00094	2.0	0.20
2,3,3,3-Tetrafluoro-2-(heptafluoropropoxy)propanoic acid (HFPO-DA or "GenX")	0.04	0.0045	0.004	0.0015	2.0	0.33
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonate (F53B major)	0.04	0.0093	0.004	0.00049	2.0	0.19
11-Chlororeicosafluoro-3-oxaundecane-1-sulfonate (F53B minor)	0.04	0.0053	0.004	0.00080	2.0	0.20

REGULATORY LIMITS¹ (WATER)

Jurisdiction		PFOA (μg/L)	PFOS (μg/L)	PFBA (μg/L)	PFBS (μg/L)	PFHxS (μg/L)	PFPeA (μg/L)	PFHxA (μg/L)	PFHpA (μg/L)	PFNA (μg/L)	GenX (µg/L)
Drinking Water											1
Health Canada ⁽²⁾	Screening Value	0.2	0.6	30	15	0.6	0.2	0.2	0.2	0.02	N, V
British Columbia	BC CSR	0.2	0.3	N/V	80	N/V	N/V	N/V	N/V	N/V	N, V
U.S.A - EPA	Health Advisory	0.07	0.07	N/V	N/V	N/V	N/V	N/V	N/V	N/V	N,V
U.S.A. – Minnesota	HBV	0.035	0.027	7	3	0.027	N/V	N/V	N/V	N/V	N,V
U.S.A. – New Jersey	MCL	0.014	0.013	N/V	N/V	N/V	N/V	N/V	N/V	0.013	NV
U.S.A. – N. Carolina	IMAC	2	N/V	N/V	N/V	N/V	N/V	N/V	N/V	N/V	0.14
Europe – UK	HBV	10	0.3	N/V	N/V	N/V	N/V	N/V	N/V	N/V	N/V
Australia	HBV	0.56	0.07	N/V	N/V	0.07	N/V	N/V	N/V	N/V	N/V

⁽¹⁾ Sources: ITRC PFAS Regulations, Guidance and Advisories Fact Sheet (June 2018) ⁽²⁾ Protection of Human Health - [PFOS]/SV_{PFOS} + [PFOA]/SV_{PFOA} \leq 1 ⁽³⁾ Highlighted values have not yet been promulgated

SUMMARY

- PFAS Replacements GenX and ADONA are a growing concern in North America
- F53B...depends on how extensively it was used in the North American marketplace (suggestion is that F53B used uniquely in Chinese electroplating facilities)
- US DoD is focusing attention on all three: GenX, ADONA and F53B
- Good PFAS sampling practices are a "must"
 - Attention to sources of contamination
 - PFAS-free water
 - Solid field quality assurance program
- The laboratory analyses are becoming increasingly complex as new compounds are being added to the lists, requiring:
 - Synthesis of labelled analogues (standards)
 - Multiple injections onto the LC/MS/MS per test
- What were once "provisional guidance values" are becoming "regulated standards"

Stephanie Pollen, BSc Project Manager Ultra Trace Analysis spollen@maxxam.ca

(905) 817-5830

Adam Robinson Supervisor LC and LC/MS/MS Methods arobinson@maxxam.ca (905) 817-5700 ext. 4057

Terry Obal, PhD, CChem Chief Science Advisor

tobal@maxxam.ca (905) 288-2174

Shaping a World of Trust

www.bureauveritas.com

