Salicornia Production by Produced Water

Hafeez Chishti, PhD, P.Geo. Tahir Rashid, PhD, P.Ag

EnviroLead Canada

EnviroTech 2020 June 11, 2020 EnviroLead Canada

PRODUCED WATER

- Produced water is a by-product of oil and gas recovery operations
- ▶ World average water to oil ratio (WOR) = 2 : 3
- ▶ TDS = 12000 mg/L to 160000 mg/L (1.2% 16%).
- ▶ Sodium adsorption ratio (SAR) = 5 >32
- ▶ Oil and Grease = 25 mg/L to 5000 mg/L (0.0025 0.5%)
- Typically found inorganics in produced waters include zinc, lead, manganese, iron, and barium.

MANAGING PRODUCED WATER

- Deep Well Injection
- Enhanced Oil Recover
- Water Treatment including:
 - Reverse osmosis systems (very costly)
 - Wetlands (sustainable and practical)

WET LANDS VS DEEP WELL INJECTION

- Energy consumption to treat produced water:
 - > Wetland treatment = 0.06 kWh per m³
 - Deep well injection = 3.6 5.5 kWh/m³
- Saving of 98.3 98.9 %
- Reduction in CO₂ emissions
- Wetlands also provide a valuable habitat for migratory bird

NIMR REEDBED PRODUCED WATER TREATMENT PROJECT (OMAN)

NIMR REEDBED WATER TREATMENT PROJECT

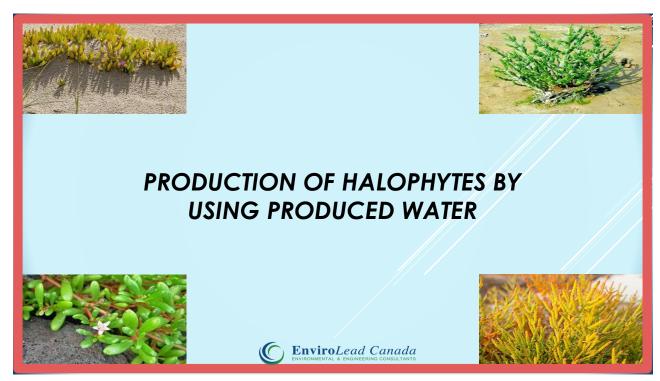
EnviroLead Canada

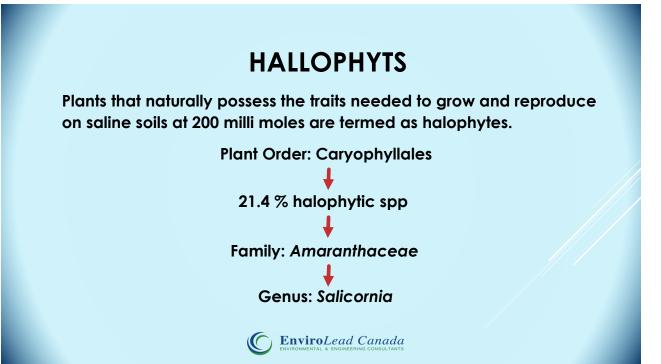
- ▶ The NIMR oilfield requires 250,000 m³/d of water to be managed
- One of the largest constructed wetland systems to manage more than 45,000 m³/day
- System consists of a passive oil-water separator
 - 234 ha of surface flow wetlands and
 - 300 ha of evaporation ponds
- During 2012, 120 ha were added to wetland to increase the treatment capacity of the plant to 95,000 m³/day.

NIMR REEDBED WATER TREATMENT PROJECT

- Project is able to recover as much as >200 bbl/d of oil from the produced water
- The oil content in the produced water reduced from 400 mg/L to <0.5 mg/L</p>
- ▶ Reduced the energy footprint by 80%
- Expected salt production of 0.21 million m³/year
- The wetlands provided a habitat for migratory birds of 100 bird species

DOES WETLAND PROVIDED FULL SOLUTION TO PRODUCED WATER PROBLEM?


► No! ... Why:


- Wetland treated the hydrocarbons but not the salinity leaving behind highly saline water
 - Incoming water salinity = 6180 mg/L
 - Outgoing water salinity = 10460 mg/L
 - ▶ 59% higher than the untreated water
- For which evaporation ponds are used to evaporate the water.

WHAT TO DO WITH HIGH SALINITY PRODUCED WATER?

- Water is life and its value is tremendous in desert areas of the World
- ► It is "Blue Gold" if oil is "Black Gold"
- There are other uses of this water including
- Aquaculture and
- Production of halophytic plants (hydroponics or soil based production)

SALICORNIA

Salicornia consists of highly salt tolerant annuals without salt glands/salt bladders (Flowers et al., 2010).

Salicornia has been "selectively developed" since early 1980's in Mexico's Sonora state, on the edge of the Gulf of California.

SALICORNIA

- Worldwide, there are 130x10⁶ ha of land (0.5 x 10⁶ miles²)
 = land under conventional irrigation today, which can be brought under Salicornia cultivation.
- Salicornia crops had been grown successfully in trial plots in the United Arab Emirates, Egypt and Kuwait, as well as in Jubail, Saudi Arabia.

SALICORNIA

In Behar Project of Saudi Arabia about 100 tons of Salicornia crop was used as forage for dairy herds, and exploring the possibility of air-shipping the crunchy green tips of Salicornia to wholesalers.

Historically, Salicornia was known for its digestive and anti-flatulent properties. It also contains diuretic and depurative properties and is rich in I, P, Ca, Si, Zn, Mn and vitamins A, C and D.

SALICORNIA RESPONSE TO SALINITY

- In low salinity, the cell electro potential of Salicornia root cells were found to respond to inhibitors in a fashion similar to that observed in glycophytes
- In high salinity, root cell membrane potential appears to be insensitive to bathing salinity and *m-chlorocarbonylcyanide phenylhydrazone* induces membrane hyperpolarization
- CI⁻ and Na⁺ are apparently accumulated at the expense of metabolic energy by Salicornia roots

SALICORNIA GROWTH IN SALINE WATER

The halophytic species of the <u>Amaranthaceae</u> family have generally the highest Na⁺: K⁺ ratios, which are detrimental to most other species.

Salicornia dolichostachya possesses a mechanism to specifically absorb K⁺ in the presence of high external Na⁺ levels.

Salicornia dolichostachya showed optimum growth at 300 mM NaCl in the root medium.

SALT TOLERENCE OF SALICORNIA

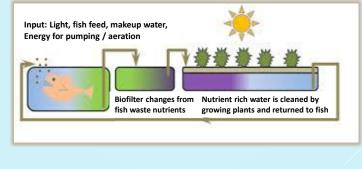
Plant Species	Salt Concentration (mM) at which germination reduced from 75 to 100%
Salicornia brachystachya	240
Salicornia bigelovii	1000
Salicornia brachiata	600
Salicornia dolistachya	240
Salicornia europaea	850
Salicornia herbacea	1700
Salicornia pacifica	860
Salicornia patula	340
Salicornia persica	>500
Salicornia rubra	1000
Salicornia virginica	600
	Khan and Gull, 2006

SALICORNIA PRODUCTION USING NIMR TREATED WATER

- Salinity of NIMR wetland project = 10140 mg/L which is = approximately 1 % salts or 174 mM.
- Seawater in the world's oceans has a salinity of about 35000 mg/L, or 3.5% (599 mM).
- Optimum growth of salicornia is achieved at 300 mM or 17529 mg/L or 1.75% salts.
- The above mentioned concentrations clearly show that the NIMR project treated water can successfully be used for salicornia production.

SALINE WATER COMPOSITION

Salinity	Sea Water	Produced Water NIMR	Optimum Salicornia Growth	Brackish Groundwater
ppm	35,000	10140	17529	3000
%	3.5	1	1.75	0.3
mM/L	599	174	300	51.48


AQUACULTURE

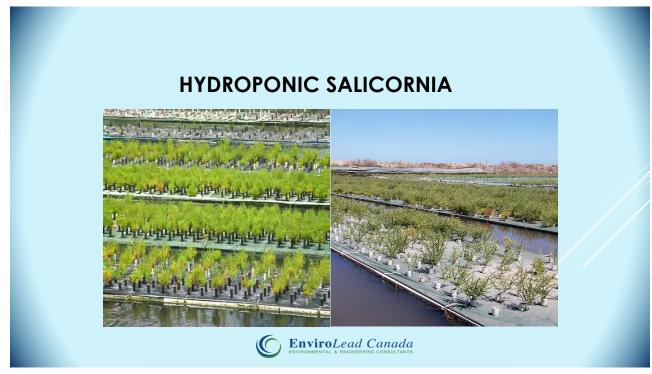
- The term aquaculture refers to the cultivation of both marine and freshwater fish species
- A rich protein food source for humans
- Aquaponics Integration of Aquaculture with Hydroponics
- Enrichment of produced water with nutrients needed for plant production i.e. production of salt tolerant (halophytic) plants

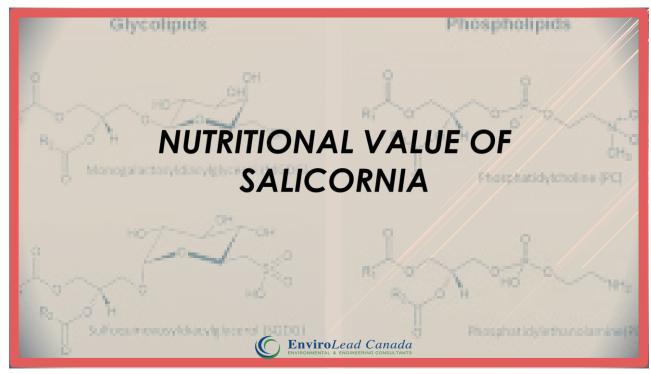
SMALL SCALE SALICORNIA PRODUCTION THROUGH AQUAPONICS

Aquaponics = Aqua culture + hydroponics

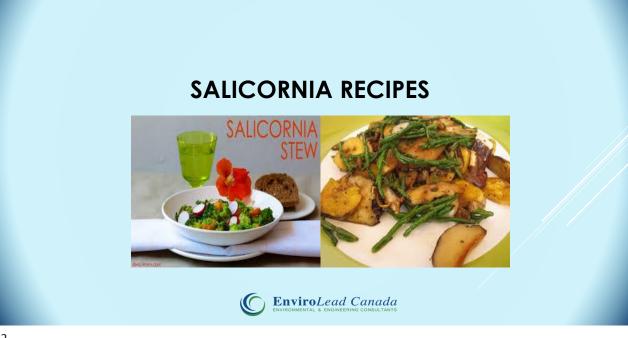
SMALL SCALE SALICORNIA PRODUCTION

Green House Production




LARGE SCALE SALICORNIA PRODUCTION

LARGE SCALE SALICORNIA PRODUCTION


SALICORNIA COMPOSITION

Crude protein	Ether	Crude fiber	Gross energy	Oil Content	Protein
	g kg ⁻¹		MJ kg⁻¹	7	6
340	64.5	36.0	19.4	26-33	33
Attia F. M . Et al 1997				. Et al 1997	
			TOLEAD CANADA		

SALICORNIA VS OTHER OILSEED CROPS

Cotton seed	Soybean					
Fatty Acids %						
15- 24	17-21					
Salicornia fatty acid composition						
Oleic acid (Omega 3)	Linoleic acid (Omega 3)					
12-17	76-80					
Elsebaie et al 2013						
	Fatty Acids % 15- 24 ia fatty acid compositio Oleic acid (Omega 3)					

SALICORNIA RECIPES

