

Case Study Tier 2 Data Evaluation

How A Little Upfront Effort Can Save Millions on the Back-End

Troy Lapohn P.Tech. (Eng.) and Colin Badger B.Sc. EIT

Why?

- Successful project
- Achieved regulatory closure
- Short time frame < 5 years
- On budget and achieved significant cost saving for client
- Did not compromise safety or the protection of receptors

Try to make the complex simple !

Managing Contaminated Sites

- Time-sensitive
- Multidisciplinary involvement requires effective communication and timely completion of deliverables
- New Remediation Regulations – January 2019

The Road Map – Where are you going?

Remediation vs. Risk Management

• Remove the hazard (chemical)

 Manage the receptor (human, eco) or exposure pathway

Alberta Tier 1 and Tier 2 Management Approaches

Tier 1	Tier 2	Exposure Control	
Meet generic criteria	Meet site-specific criteria	Control receptors and/or exposure pathways; monitor; have contingency plan(s)	
	a) Pathway exclusion		
	b) Guideline modification		
	c) Site-specific risk assessment		
←REGULATORY CLOSURE→ (remediation)		←NO REGULATORY CLOSURE→ (risk management)	

Tier 2 tailors guidelines to a site

Pathway Exclusion

- 1. Determine applicable land use
- 2. Determine soil texture
- 3. Filter by contaminant
 - what are the governing exposure pathways?
 - are they eligible for exclusion?
 - do conditions exist that support exclusion?
- 4. Exclude pathways as appropriate and modify criteria accordingly
- 5. Document Methods and Process

Conceptual Site Model (CSM) Work Flow

Case Study

- NW Alberta
- Upland Forested Area
- Lots of Wildlife
- Release within a pipeline right of way
- Emulsion consisted of sour crude and produced water

Control, Containment and Recovery

- ERP Shut in line and facility
- Relatively small amount of released fluids <6 m³
- H2S Major safety challenge
- Pooled fluids recovered by vacuum truck

-68

64

43

Intrusive Site Assessment

- Geology consisted of organic soils at surface, underlain by clay till to 15 m (bgs).
- Groundwater was measured about 3m (bgs).
 Likely not static in year 1, due to fine grain soils. Many wells dry after being drilled.
- Geomean soil conductivity 4 × 10⁻⁹ m/s based on 4 core samples – using falling head test.
- Natural Area Fine Grain Soils

CSM – CoPC

- Salinity (chloride), BTEX, F1, F2, and four PAH parameters exceeded Tier 1 guidelines in soil within spill area.
- Fluoranthene and pyrene exceeded Tier 1 guidelines in groundwater at 1 location
- The estimated volume of soil above Tier 1 guideline is 1,850 m³.

CSM Potential Pathways Evaluated

Potential Exposure Pathway

- Potable groundwater (DUA)
- Eco direct soil contact
- Freshwater aquatic life
- Wildlife soil/food Ingestion
- Wildlife watering
- Management limit

Tier 2 Evaluation for DUA Exclusion

• DUA:

- The hydraulic conductivity is less than the AEP requirement of 1×10^{-6} m/s in all of the bore holes; therefore, the clay till unit is not considered to be a DUA.
- Hydraulic Barrier:
 - There was at least 5 m of massive, unfractured, uncontaminated, fine-grained material with a bulk hydraulic conductivity of 1 × 10-7 m/s or less.
- The low hydraulic conductivity confirmed the clay would not be suitable for use as a DUA and would act as a hydraulic barrier for downward migration of potential contaminants.

Tier 2 Evaluation for FAL Exclusion

- FAL pathway can be eliminated if the nearest surface water body is greater than 300 m downgradient from the site
- Borrow Area
 - 50 m from the site
 - The next closest surface water is a wetland located 800 m northeast of the break point
- The next closest surface water is a wetland located 800 m northeast of the break point

Tier 2 Evaluation for Direct Soil Contact

- DSC:
 - DSC pathway for PHCs F1 to F4 can be eliminated for depths greater than 3 m
 - Application of the "management limits" that represents the maximum concentration that can apply at any depth

• All reported PHCs F1 to F4 concentrations were below Tier 1 guideline.

Tier 2- Exposure Pathways & COC

Exposure Pathway		Soil	Groundwater
• • •	Potable groundwater (DUA) Eco direct soil contact >3m Freshwater aquatic life	F1-F4	PAH
•	Eco direct soil contact <3m Wildlife soil/food Ingestion Wildlife watering Management limit	TEX B	

Salinity – Tier 1 - Background

- Background Soil Quality
- 95th percentile

- 28 samples within specific depth interval
- 0 to 1.5 m (EC = Poor, SAR=Fair)
- > 1.5 m (EC = Poor, SAR=Fair)

Targeted Remediation Plan

- Soils
 - Excavate PHC-impacted soils to a depth of 2 m bgs to Tier 2
 - Excavate salinity impacts to a depth of 3 m bgs equivalent to background
 - 350 m³ of impacted soil above Tier 2 guidelines
- GWM
 - Post remedial monitoring (Spring / Fall)
 - Monitor gw quality

• Plan accepted by regulator

Post Remediation

- GW quality met Tier 1 in all subsequent events
- All remediation targets were met for soil and groundwater quality
- Excavation backfilled to match natural grade
- Regulatory closure achieved

- The estimated volume of soil above Tier 1 guideline is 1,850 m³
- Using a Tier 2 approach we were able to exclude the DUA, FAL and DSC > 3m pathways
- Total volume of 350 m³ was required to be removed.
- 80% reduction in soil volume.
- Reduced footprint.

Questions

