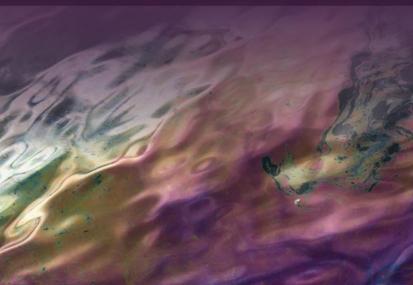


Behaviour of Heavy Oil in a River: North Saskatchewan River Oil Spill

Matrix Solutions Inc. Integrated Services • Innovative Solutions

North Saskatchewan River 2016 Oil Release

- July 21, 2016: Oil leak near the North Saskatchewan River
- Break occurred on land, ~160 m from the south bank
- 225 m³ (+/- 10%) crude oil blended with condensate
- ~60% of the product contained on land


Knowledge Gap

- Fate and behaviour of spills in freshwater environment
- Fate of unrecovered oil in:
 - -sediment
 - -woody debris

RSC The Royal Society of Arts. Humanities and Sciences of Canada

The Royal Society of Canada Expert Panel: The Behaviour and Environmental Impacts of Crude Oil Released into Aqueous Environments Fall 2015

Dr. Michel Boufadel Dr. Bing Chen Dr. Julia Foght Dr. Peter Hodson Dr. Kenneth Lee (Chair) Dr. Stella Swanson Dr. Albert Venosa

Initial Uncertainty

How do you find <100m³ in >600Km of river?

Did the released oil deposit along the shoreline and within shoreline sediment? What properties can be used to identify the oil from other hydrocarbon sources?

Does the oil become buried in sediment? If so, how deep and at what rate? Would leaving unrecoverable oil in place result in an acceptable risk to receptors?

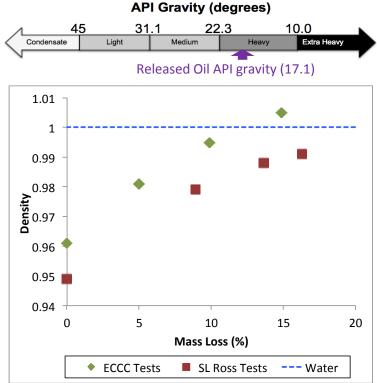
Steps to Resolve Uncertainties

Oil Characterization & Delineation	 weathering chemical mixture changing hydrological conditions soil, water, sediment, vegetation, woody debris, foam and sheen
Developing an Understanding of Fate and Transport	 assessing river hydraulics (2D modeling) sediment transport mechanisms continued weathering and entrainment
Data Acquisition and Management	 sampling consistency QA/QC timely data storage and retrieval
Quantifying Risk	 human health (drinking, exposure) ecological receptors (aquatic and terrestrial organisms)

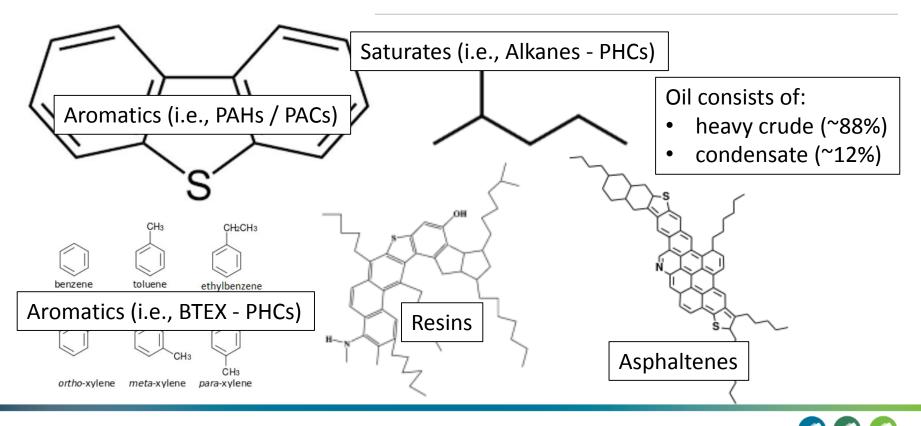
Pipeline Break

Initial Distribution

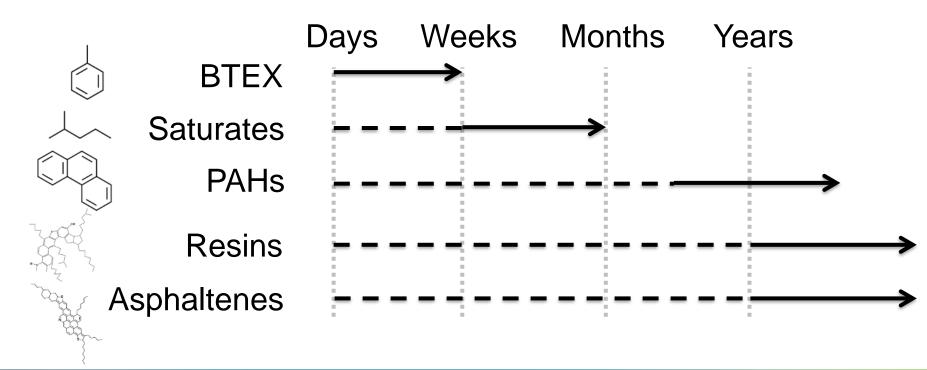
Point of Entry


Oiled Vegetation

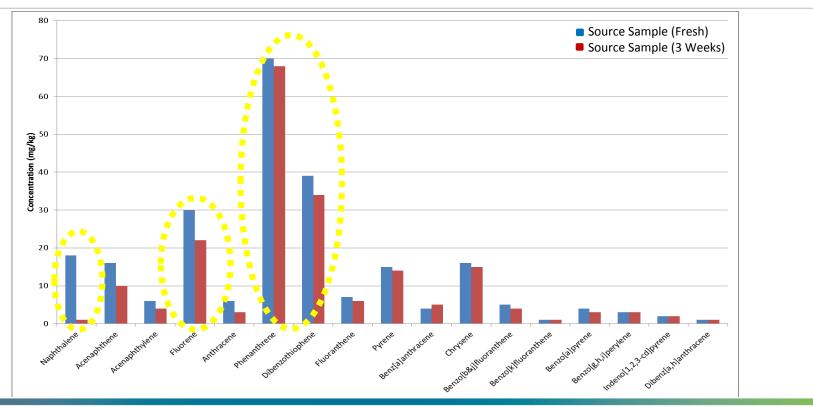
Product Adsorbed to Suspended Sediment


Physical Properties of the Released Oil

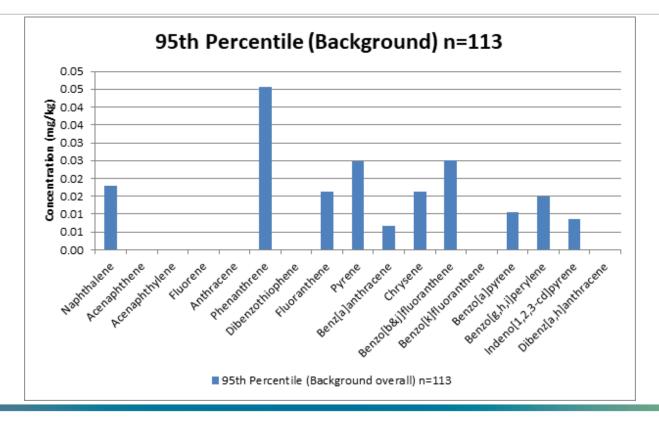
- Source and weathered samples were analyzed.
- Oil consists of:
 - heavy crude, inert to short-term weathering
 - condensate, rapidly affected by weathering
 - Hydrophobic / affinity to soils / sediment
- 15% by weight weathered after 15-18 days.
- Surface water remained over 10°C to end of September, so oil remained less dense than water



What is the Product?

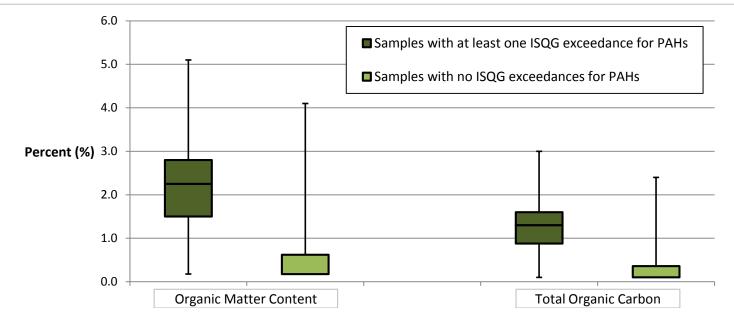

Matrix Solutions Inc.

Weathering



Contaminants of Concern

Background Characterization



Sediment Characteristics

Sediment Type	Total # Samples Taken	% of Total Samples	# of Samples with PAH Guideline Exceedances (ISQG)	% Exceedances
Unclassified	25	2%	3	12%
Coarse	1103	85%	44	4%
Fine	175	13%	99	57%
Total	1303	100%	146	11%

- Relationship between sediment type and guideline exceedances
- More exceedances found in fine vs. coarse (i.e., sandy) sediment

Sediment Characteristics

- Relationship between organic matter and guideline exceedances
- More exceedances found in samples with higher TOC >0.5%

Hydraulic Modelling Analysis / Results

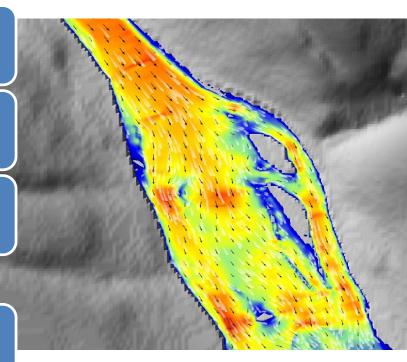
Understand the detailed hydraulics in the area immediately downstream of the spill

Prediction and verification tool

- prediction where and when do deposition conditions occur
- verification of where exceedances were found

Gain insight on mobilization and sediment transport

Hydraulic Modelling Analysis / Results

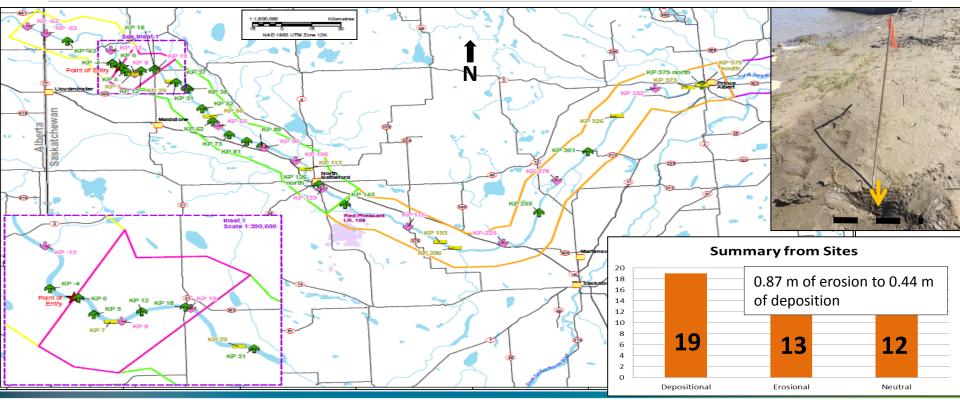

Majority of the river bed is sand

Fine sediment more likely to erode and will travel further than coarse material

Fine sediment accumulates in the channel margins and around bars and islands

 hydraulics support slow moving shallow areas with low shear stress

Fine sediment can travel up to 125km, more likely that particles will travel <1KM



M aki	

CONSIDERATIONS	IMPLICATIONS
PAHs and DBT have low volatility.	They are not a concern for breathing-zone air.
They are not water-soluble to any appreciable degree.	Analysis of NSR river water confirms that the water itself is fine.
They have an affinity for organic matter and soil particles.	Adherence to soil, sediment, woody debris.
Sediment/soil particles sink in water.	Release constituents persist chiefly in river-bottom sediment.
River turbulence causes redistribution.	High flows scour and remobilize sediment; falling water levels can leave traces of PAHs and DBT on exposed shoreline.

Verifying Hydraulic Model

Initial Uncertainty - Revisited

What properties can be used to identify the oil from other hydrocarbon sources?

Did the released oil deposit along the shoreline and within shoreline sediment?

How do you find <100m³ in >600Km of river?

Would leaving unrecoverable oil in place result in an acceptable risk to receptors?

Does the oil become buried in sediment? If so, how deep and at what rate?

