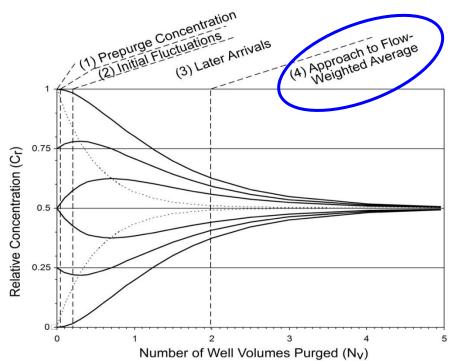
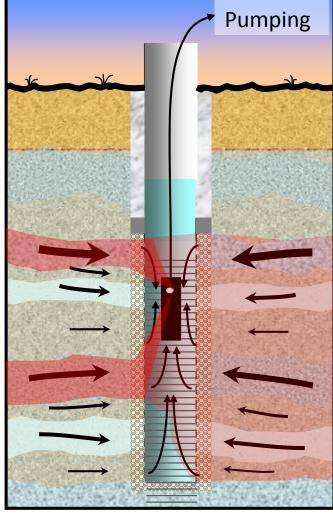
Well Flow Dynamics and the Application of Passive Sampling Techniques

Sanford (Sandy) Britt, PG, CHG QED Environmental Systems, Inc. SBritt@QEDenv.com

EnviroTech, Calgary, 25 April 2019

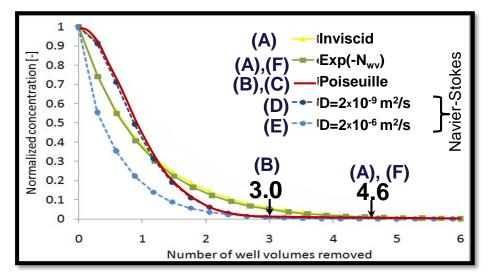




Purging a well...

What controls flow-weighting *during pumping*?

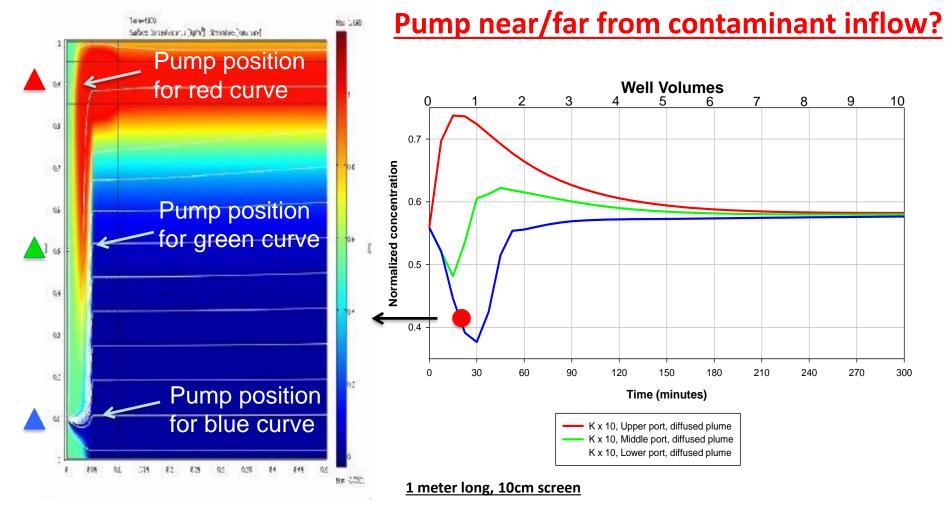
- Contaminant stratification
- Inflow distribution
- Pump position relative to stratification



Martin-Hayden, 2000, Sample Concentration Response to Laminar Wellbore Flow: Implications to Ground Water Data Variability. *Ground Water* 38, no. 1: 12-19.

How do we get to a Flow-Weighted Average?

Martin-Hayden, J., M. Plummer and S. Britt (2014) Controls of Wellbore Flow Regimes on Pump Effluent Composition, Ground water, v52, p. 96-104.


Pumping

Arrival time and FWA depends on....

- Pumping rate
- Well diameter
- Well screen length
- @ 250ml/min in a 3m/10ft well....
 - 1WV in 50mm/2" takes ~23 minutes
 - 1WV in 100mm/4" well takes ~ 94 minutes

Modelled well flow

250ml/minute pump rate

K= 1x10⁻² cm/sec in contaminated zone, 1x10⁻³ in remaining aquifer

Pump located 10cm from bottom position

Britt, Sanford L., James Martin-Hayden, Mitchell A. Plummer, 2015, SERDP Project ER-1704 Final Report, An Assessment of Aquifer/Well Flow Dynamics: Identification of Parameters Key to Passive Sampling and Application of Downhole Sensor Technologies, 76p.

Field Confirmation....

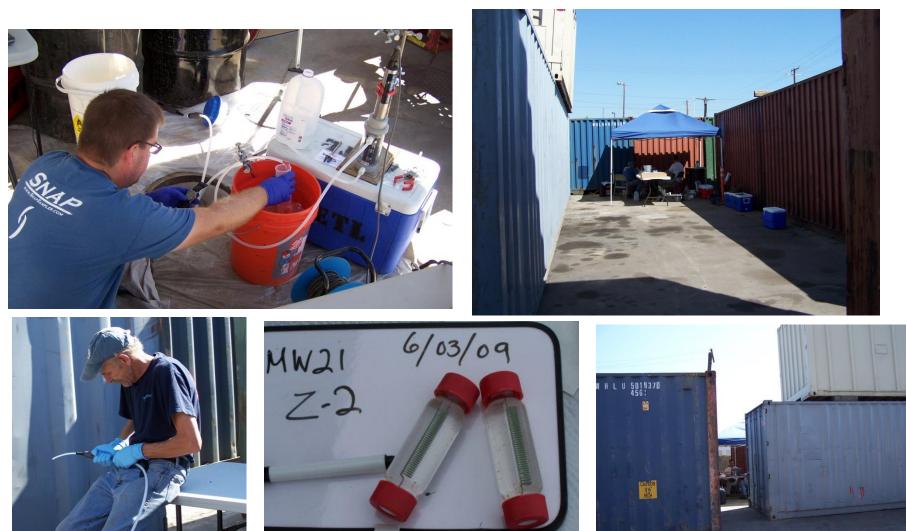
Stratification testing at *existing* wells

- 8 wells
- 2 to 4 depths
- prep for "purge curve" testing

Three <u>new wells</u> built to accommodate equipment

Purge Test Set-Up

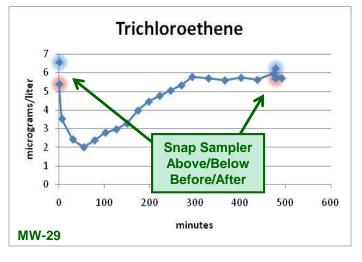
- Pump
- Sensors-level, Conductivity, pH, ORP, Chloride
- Snap Samplers— over/under...before/after

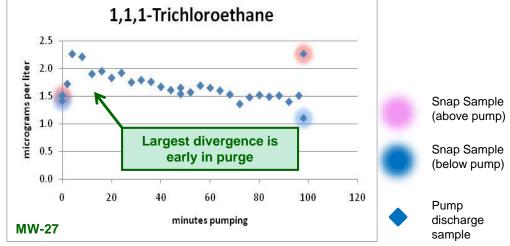


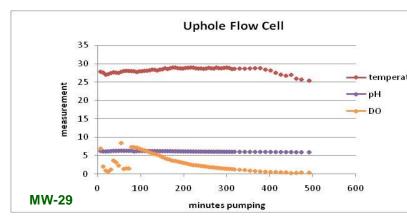
Low Rate purge—multiple VOC samples collected along "purge curve"

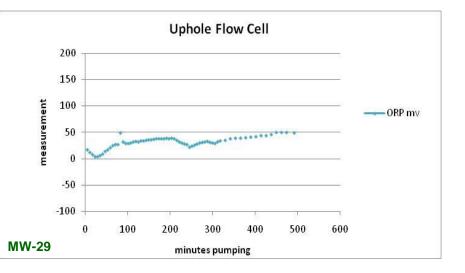
Contaminant Chemistry

Sample ID						
Same	29-SS-L1	29-SS-U1	MW29-1	MW29-2	MW29-3	MW29-4
Sample Date			9/1/2009	9/1/2009	9/1/2009	9/1/2009
Laboratory Job Number			53966	53966	53966	53966
time			1112	1136	1200	1224
minutes elapsed	Q	0	6	30	54	78
volume pumped	0	0	0.5	2.7	4.9	7.0
Acetone	18.4	19.3	10	10	10	10
Benzene	19.2	16.5	11.3	6.64	5.09	5.66
sec-Butylbenzene	1.18	0.78	0.5	0.5	0.5	0.5
Chlorobenzene	18.4	14.2	8.75	6.02	5.49	6.69
Chloroethane	39.2	32.8	24.1	14.2	11.9	10.3
1,2-Dichlorobenzene	0.5	1.38	0.5	0.5	0.5	0.5
1,1-Dichloroethane	6,000	4,000	3,920	2,710	2,490	2,590
1,2-Dichloroethane (EDC)	45	39.2	24.5	16.7	14.2	15.6
1,1-Dichloroethene	234	201	162	117	85.8	89.3
cis-1,2-Dichloroethene	111	98.5	85.3	58.5	44.8	45.9
trans-1,2-Dichloroethene	0.91	0.96	0.5	0.5	0.5	0.5
Ethylbenzene	5.98	4.8	1.63	1.02	0.68	0.75
Isopropylbenzene	0.84	0.6	0.5	0.5	0.5	0.5
p-Isopropyltoluene	0.5	0.5	0.5	0.5	0.5	0.5
4-Methyl-2-pentanone (MIBK)	63.4	31.5	12.8	3.12J	2.5	3.02
n-Propylbenzene	0.5	0.5	0.5	0.5	0.5	0.5
Tetrachloroethene	10.2	7.51	4.21	3.45	2.98	3.39
Toluene (Methyl benzene)	5.87	6.35	3.15	2.15	1.62	1.67
Trichloroethene	6.57	5.39	3.54	2.43	2.01	2.38
1,2,4-Trimethylbenzene	14.9	11.2	2.54	1.27	1.06	1.19
1,3,5-Trimethylbenzene	2.76	2.08	0.67	0.5	0.5	0.5
Vinyl chloride	332	297	228	170	118	117
(Chloroethene)						
o-Xylene	2.01	1.86	0.79	0.5	0.5	0.5
m,p-Xylenes	7.9	6.27	2.04	1.24	1	1
Diisopropyl ether (DIPE)	0.5	0.5	0.5	0.7	0.66	0.5
1,4-Dioxane	35,500	30,100	40,300	27,200	27,400	26,600

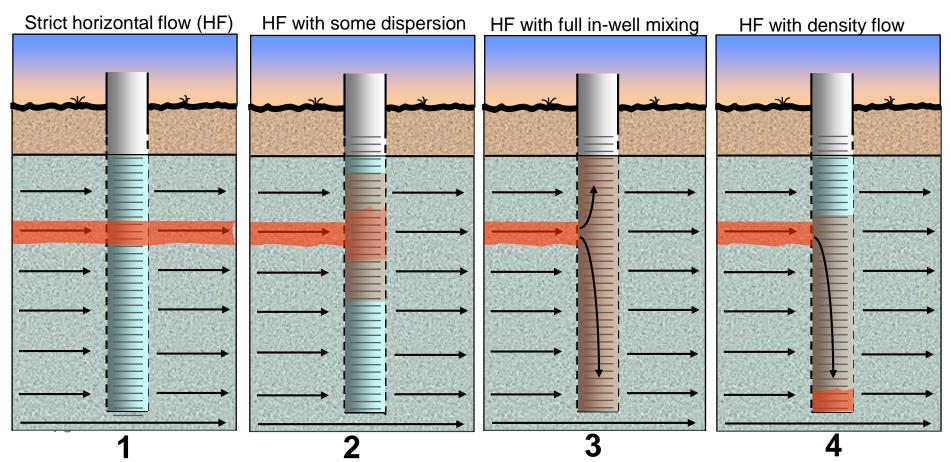

"Purge curve" samples collected from *pump discharge*


In situ Snap Samples collected Above/below pump Before/after pumping


Purge "curve" test results

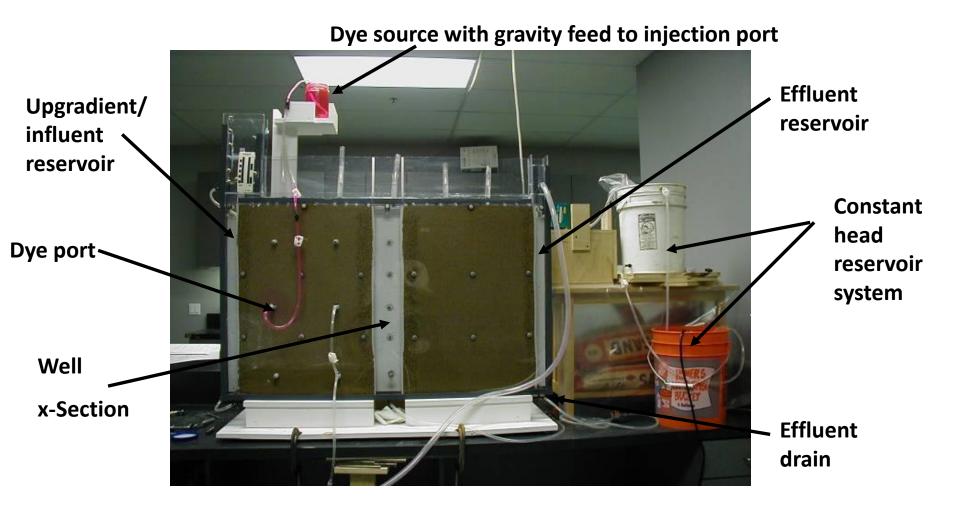

Contaminant Chemistry Curves over Five Well Volumes

Indicator Parameters?



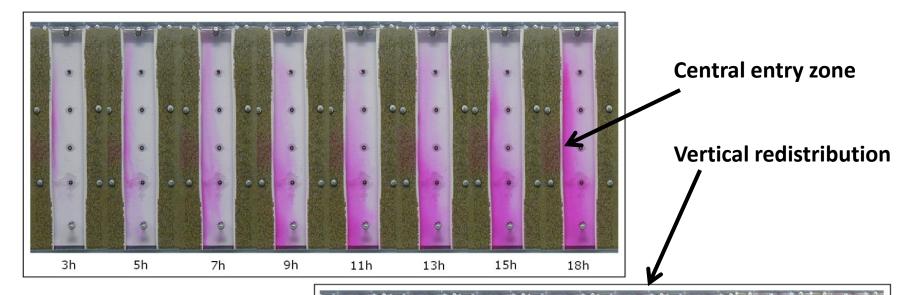
Passive flow-through concepts

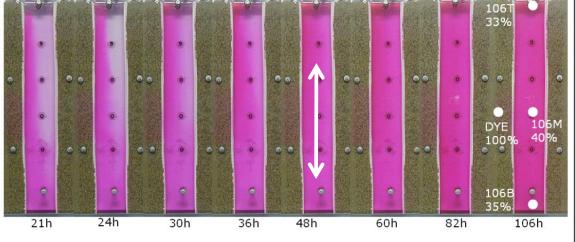
Some conditions tested by Britt, 2005 density contrast, mild heterogeneity



Britt, S.L., 2005, Testing the In-Well Horizontal Laminar Flow Assumption with a Sand-Tank Well Model, GWMR, v.23, no. 3, p. 73-81.

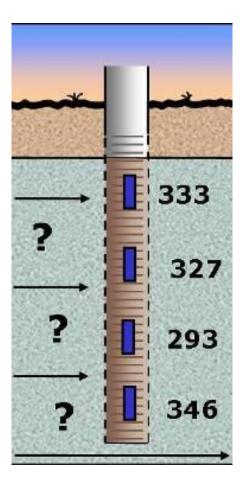
Modeled in-well behavior

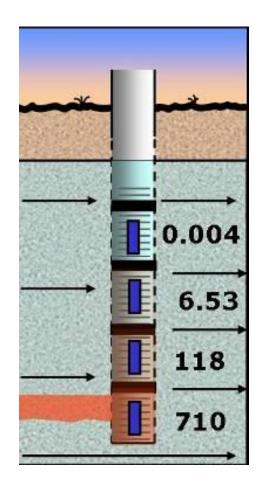

What resides in the well between sampling events?



Britt, S.L., 2005, Testing the In-Well Horizontal Laminar Flow Assumption with a Sand-Tank Well Model, GWMR, v.23, no. 3, p. 73-81.

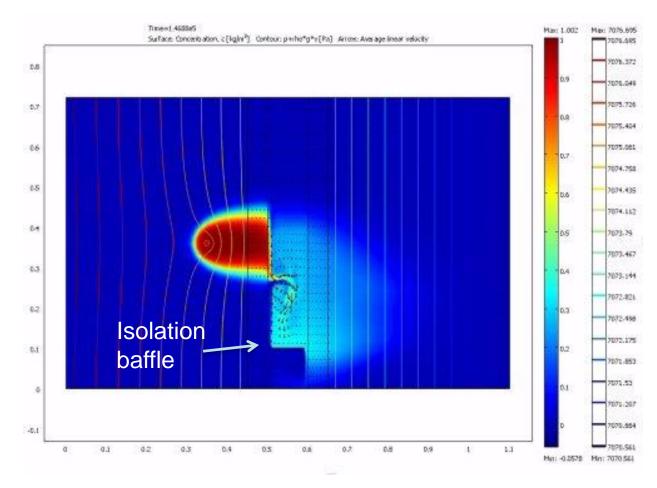
Inflow and residence time yields <u>flow-weighted mixing</u>—


Britt, S.L., 2005, Testing the In-Well Horizontal Laminar Flow Assumption with a Sand-Tank Well Model, GWMR, v.23, no. 3, p. 73-81.


12

Field verification of concepts

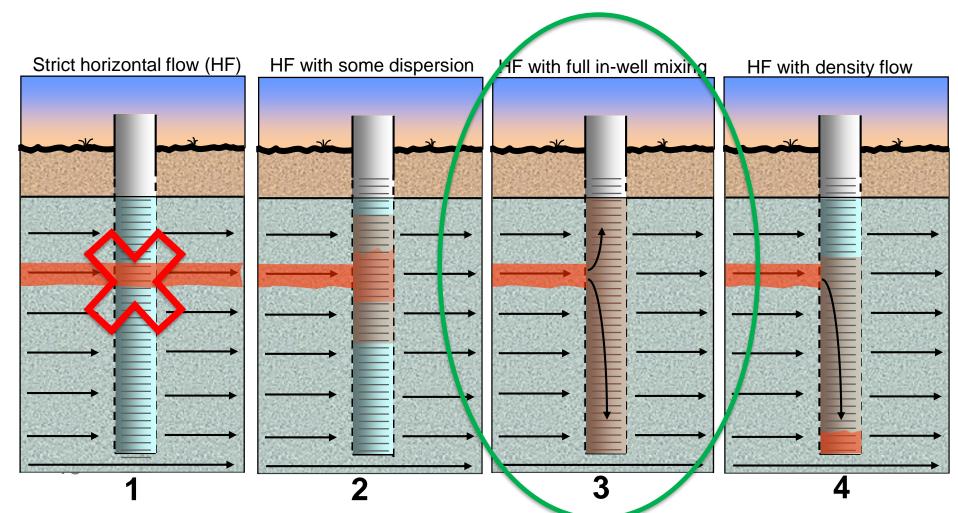
Field example illustrates the flow-weighted mixing concept



In-well baffle device/ Mixing inhibitor

Britt, SL and Calabria M, 2008, Baffles may allow effecting multilevel monitoring in traditional monitoring wells, Battelle Chlorcon Conference, Monterey California, May 2008

Physical and Numerical Model results

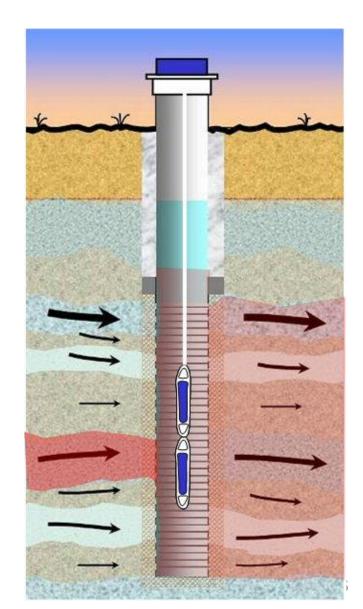

- Physical Model
- Density nearly neutral
- Numerical Model
- Match is pretty good
- Density +3 x 10⁻⁷ greater than neutral

Britt, S.L., 2005, Testing the In-Well Horizontal Laminar Flow Assumption with a Sand-Tank Well Model, GWMR, v.23, no. 3, p. 73-81.

Britt, Sanford L., James Martin-Hayden, Mitchell A. Plummer, 2015, SERDP Project ER-1704 Final Report, An Assessment of Aquifer/Well Flow Dynamics: Identification of Parameters Key to Passive Sampling and Application of Downhole Sensor Technologies, 76p.

Passive flow-through expectation...

Britt, S.L., 2005, Testing the In-Well Horizontal Laminar Flow Assumption with a Sand Tank Well Model, GWMR, v.23, no. 3, p. 73-81.



The Take Away?

Passive equilibration is often <u>very similar</u> to end-stage purge-to-stability sampling

- <u>Natural flow</u> delivered to well
- Ambient / <u>passive mixing</u> according to native flow dynamics
- Flow-weighted averaging effect

Passive Sampling normally yields a Flow Weighted Average too

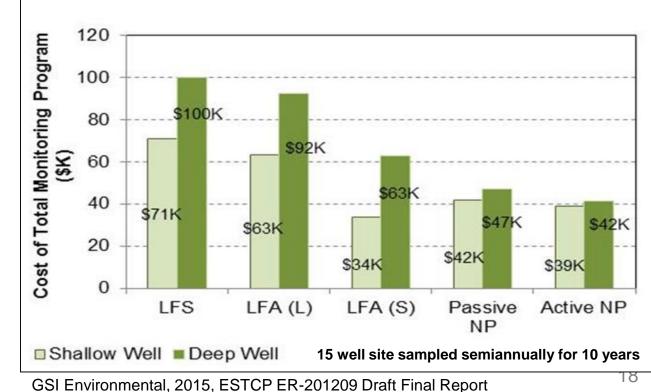
Less Work

...without this truck...

...and with almost none of this equipment $\langle \cdot \rangle$

<u>Safety</u> and <u>efficiency</u> is improved

- No drums
- No generator
- No compressed gas
- No fuel
- Shorter time at the well


Lower Cost

Purging requires time in the field, equipment, and waste

Passive sampling allows you to <u>sample right away</u>

NO More: Equipment rentals Pumping Troubleshooting meters Measuring parameters Waste handling

ALWAYS: Sample right away Sample faster Know your sample Improve Data Quality

Passive prove-out assessments

<u>Polyethylene Diffusion Sampler</u>

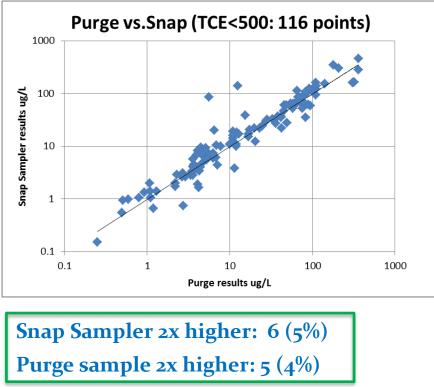
USGS Reports US Air Force Reports Peer-reviewed lit.

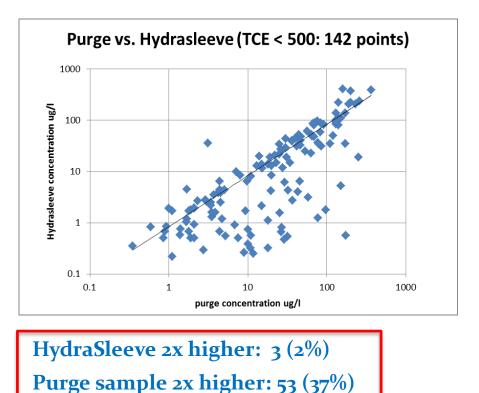
<u>Regenerated Cellulose Diffusion Sampler</u>

ER-200313 4 Reports by NAVFAC *Peer-reviewed lit.*

- <u>Snap Sampler</u> ER-200603
 5 Reports by Army Corps ERDC/CRREL Peer-reviewed lit.
- <u>Gore Module (AGI Sampler)</u>

ER-200921 2010 ESTCP Start





Snap Sampler Data Comparison

Snap Sampler 10x higher: 2 (2%)

Purge sample 10x higher: o (o%)

HS 10x higher: 1 (<1%)

Purge 10x higher: 22 (15%)

Zumbro, M., 2014, Performance Comparison of No-Purge Samplers for Long-Term Monitoring of a Chlorinated Solvent Plume, Battelle Recalcitrant Compounds Conference, Monterey California, May 2014, Abstract E-062

Regulatory guides

Designation: D7929 - 14

Standard Guide for Selection of Passive Techniques for Sampling Groundwater Monitoring Wells¹

This standard is issued under the fixed designation D7929; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript exploin (a) indicates an editorial change since the last revision or mapproval.

1. Scope

1.1 This standard provides guidance and information on passive sampling techniques for collecting groundwater from monitoring wells. Passive groundwater samplers are able to oping groundwater monitoring wells in granular aquifers, and D6452 provides a standard guide for purging methods used in groundwater quality investigations. Consult ASTM Standard D6724 for a guide on the installation of direct-push groundRecent guide, 2014, applies to "passive" methods only

Snap Sampler, Diffusion, Sorptive

http://www.astm.org/Standards/ D7929.htm

Protocol for Use of Five Passive Samplers to Sample for a Variety of Contaminants in Groundwater

Early guide from 2007

Snap Sampler, Diffusion, Sorptive, Sleeve

http://www.itrcweb.org/Guidance Documents/DSP-5.pdf

Wrap Up

- Wells normally flow through
- Passive sampling takes advantage of well flow dynamics
- Results are normally very similar to low flow purging
- Several methods and approaches
 - diffusion, grab, sorption
- Cost savings is substantial, waste reduced, sustainability improved
- Regulatory understanding and acceptance is growing

Reports and Papers are Available....

https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Monitoring/ER-200630/ER-200630/(language)/eng-US

within an open well.

the aquifer enters the well, flows horizontally, and exits

the well at roughly the same elevation (e.g., see introduc-tion of Parker and Clark 2002, 2004).

the well? Or does it mix and dilute with cleaner water from other intervals? In this study, mixing and dilution are usually observed using time-lapse photography of a dye Copyright © 2005 National Ground Water Association.

The study presented here tests aspects of this critical assumption. How does a contaminant "stringer" behave when it enters a ground water monitoring well in natural hackground flow conditions? Does it flow straight across

Introduction

pumped from depth and contected a downhole sampling, with a sampling the well and the water sample collecter Tate (1) and Frost et al. (2) reported son groundwater samplers, which were do tion of inorganic groundwater chem sampling vessel open at both ends t through during descent in the well. At the vessel ends could be closed by control. In the 1980s, the need arose contaminants (VOCs; e.g., chlorinate constituents at very low levels (i.e recognized that uphole sampling cou stry to be unrepresentative of *in* Downhole samplers were further de

* Corresponding author e-mail: sandy * ProHydro Inc. University of Guelph. 0.1021/wr10080364 © 2010 American Published on Web (6/07/2010

taoer as it enters a model monitoring well. Limited quart introduction Alfongin are developing currently, low-flow and passive sampling techniques are conventionally dought to oppose the consuminance some marines at inter-vals of the aquifer inter the pump instale or angeler deployment possition. The conventional flongith for the low-flow and passive angeling jargety assumes hosticatal instants flow which a anothering well—due wave from tation of dye fluorescence was performed to ground the visual observations.

Background

Background Parging monitoring wells to collect representative protest area margine has been a conventional procedure protection of the product of the convention of the SIGN. Over sume of the product on the other of the signal background over how host to program wells or advector at the well and him SIN Sweet if at 2000 Margin Margin we denoted how accounted on the signal program well and him SIN Sweet if at 2000 Margin Margin well and him SIN Sweet if at 2000 Margin Margin and Lindageone 1990, Robust and Lindage 1991, Margin Hayaka and Kolabas 1997, Rohly and Leitunes 1996, Margin Hayaka and Kolabas 1997, Rohly and Leitunes 1996, Margin Hayaka and Kolabas 1997, Rohly and Leitunes 1996, Herbart and Anno 2000, Rice and 2000, Solosi.

Ground Water Maniforing & Remodation 25, no. 3/ Summer 2005/page 73-81