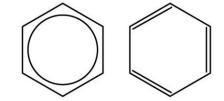

### **Authors**

Authored & Presented by: Mahyar Sakari, MRSC, AGAT Laboratories

Co-Authors: Ryan Staub, Lisa Neville

#### Benzene in the environment

- BTEX family
- Benzene CAS#: 71-43-2
- Colorless liquid
- Sweet odor, smell at 60 ppm
- Dissolves in water (limited)
- Evaporates easily
- Highly flammable
- Benzene comes from industries and nature
- It breaks slowly in water/soil








### Reactions - Types of Substitutions

• Nitration:  $C_6H_6 + HNO_3 \longrightarrow C_6H_6NO_2 + H_2O$ 



- Halogenation: Carbon Replaced by Halogen
- Sulfonation: Carbon Replaced by Sulfer
- Friedel-crafts: Acyl group (RCO-) Attaches to Ring to Make a Keytone

# **Physical Properties**

|         | Formula                       | Molecular<br>Weight (g/mol) | Vapor Pressure<br>mm Hg at 25°C | Odor Threshold    | Log K <sub>ow</sub> (Octanol<br>/Water) |
|---------|-------------------------------|-----------------------------|---------------------------------|-------------------|-----------------------------------------|
| Benzene | C <sub>6</sub> H <sub>6</sub> | 78.11                       | 95.1                            | 1.5 ppm (5 mg/m3) | 2.13                                    |

#### Sources of Benzene

- Origins
  - Old time: 1800s from coal tar
  - Modern: Petroleum (top 20 USA production)
- Industries: Styrofoam, resin, nylon, rubber, lubricant, dyes, detergent, drug & pesticides
- Nature: gas emission, volcano, forest fires



#### Health and Environmental Hazard

- Exposure by inhalation and skin
- Exposure from products (glue, tobacco, etc.)
- Emissions of car and industries: 20% total
- Permissible level in water 0-5 ppb
- 10ppb/water 0.4ppb/air, 1 extra cancer in 100,000



#### **Legal Facts**

- July 1, 1999, Gasoline supply less than 1%
- Test Methods: D2163 14e1
- Benzene is classified as carcinogenic to humans (i.e., as a non-threshold toxicant - a substance for which there is considered to be some probability of harm for the critical effect at any level of exposure)
- It is considered to be "toxic" as defined under Paragraph 11(c) of the Canadian Environmental Protection Act.
- On the basis of available data, benzene is not considered to be "toxic" as defined under Paragraphs 11(a) and 11(b) of CEPA (Canadian Council of Ministers of the Environment).

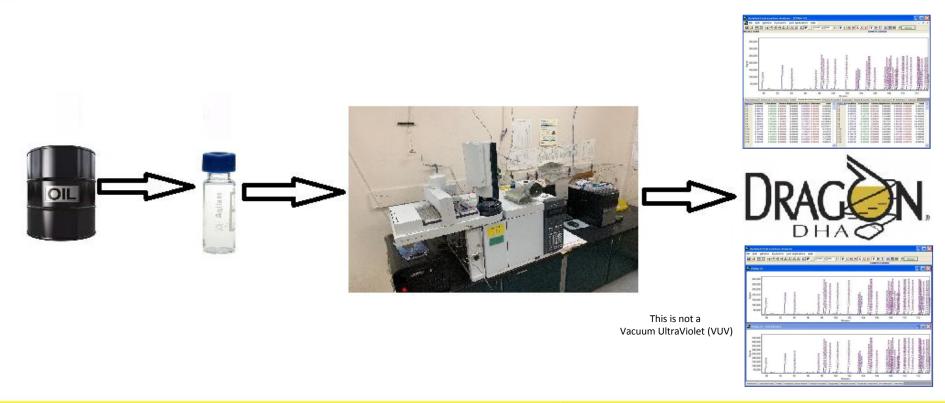


### Benzene Derivatives (properties)

|              | Formula                        | Molecular<br>Weight (g/mol) | Vapor Pressure<br>mm Hg at 25°C | Odor Threshold        | Log K <sub>ow</sub> (Octanol<br>/Water) |                                 |
|--------------|--------------------------------|-----------------------------|---------------------------------|-----------------------|-----------------------------------------|---------------------------------|
| Benzene      | C <sub>6</sub> H <sub>6</sub>  | 78.11                       | 95.1                            | 1.5 ppm (5 mg/m3)     | 2.13                                    |                                 |
| Toluene      | C <sub>7</sub> H <sub>8</sub>  | 92.15                       | 28.4                            | 2.9                   | 2.69                                    |                                 |
| Ethylbenzene | C <sub>8</sub> H <sub>10</sub> | 106.16                      | 9.53                            | 2.3                   | 3.13                                    | сн <sub>3</sub> сн <sub>3</sub> |
| Xylene       | C <sub>8</sub> H <sub>10</sub> | 106.16                      | 6.728                           | 1.1 (as per m-xylene) | 3.12                                    |                                 |



#### Toxicity of Toluene, Ethylbenzene & Xylenes


- Toxic to Vertebrate, Invertebrate, Plants, Earthworm, wheatgrass, etc.
- Toxic as low as 1 mg/L
- Cause acute and chronic effects (CNS)
- Acute: CNS dysfunction, fatigue, sleepiness, headaches, and nausea, swollen liver, congestion and hemorrhage of the lungs, tubular kidney necrosis, and impaired respiratory function.
- Chronic: drowsiness, ataxia, tremors, cerebral atrophy, nystagmus (involuntary eye movements), and impaired speech, hearing, and vision



#### Research Question

 Are there more of similar benzene compounds in sources such as oil?

# Methodology - Method



#### Results

- A total of 48 benzene compounds
- BTEX contain 6 in total
- There are 42 more benzene like compounds

# Identified Benzene Species (1)

|   | Component Name                  | Mol %  | Molecular<br>Weight | Density | Structure       |
|---|---------------------------------|--------|---------------------|---------|-----------------|
| 1 | benzene                         | 0.3124 | 78.114              | 0.8789  |                 |
| 2 | Ethylbenzene                    | 0.4932 | 106.168             | 0.867   | CH <sub>3</sub> |
| 3 | 1,3-dimethylbenzene (m-Xylene)  | 0.3615 | 106.168             | 0.8642  | CH <sub>3</sub> |
| 4 | 1,4-dimethylbenzene (p-Xylene)  | 0.2728 | 106.168             | 0.861   | CH <sub>3</sub> |
| 5 | 1,2-dimethylbenzene             | 0.2997 | 106.168             | 0.8802  | CH <sub>3</sub> |
| 6 | i-propylbenzene (Cumene)        | 0.0838 | 120.195             | 0.8618  | CH <sub>3</sub> |
| 7 | n-propylbenzene (phenylpropane) | 0.1736 | 120.195             | 0.862   |                 |
| 8 | 1,3-methylethylbenzene          | 0.2783 | 120.195             | 0.8645  |                 |

# Identified Benzene Species (2)

|    | Component Name         | Mol %  | Molecular<br>Weight | Density | Structure                        |
|----|------------------------|--------|---------------------|---------|----------------------------------|
| 9  | 1,4-methylethylbenzene | 0.1407 | 120.195             | 0.8612  | H <sub>3</sub> C                 |
| 10 | 1,3,5-trimethylbenzene | 0.1128 | 120.195             | 0.8652  | CH <sub>3</sub>                  |
| 11 | 1,2-methylethylbenzene | 0.2246 | 120.195             | 0.8807  |                                  |
| 12 | 1,2,4-trimethylbenzene | 0.2884 | 120.195             | 0.8758  | H <sub>3</sub> C CH <sub>3</sub> |
| 13 | i-butylbenzene         | 0.0129 | 134.222             | 0.8532  |                                  |
| 14 | sec-butylbenzene       | 0.0917 | 134.222             | 0.862   |                                  |

## Identified Benzene Species (3)

|    | Component Name             | Mol %  | Molecular<br>Weight | Density | Structure |
|----|----------------------------|--------|---------------------|---------|-----------|
| 15 | 1,2,3-trimethylbenzene     | 0.12   | 120.195             | 0.8944  | <u></u>   |
| 16 | 1,3-methyl-i-propylbenzene | 0.0703 | 134.222             | 0.861   | JJ        |
| 17 | 1,4-methyl-i-propylbenzene | 0.0669 | 134.222             | 0.8573  |           |
| 18 | 1,2-methyl-i-propylbenzene | 0.2116 | 134.222             | 0.8766  |           |
| 19 | 1,3-diethylbenzene         | 0.0832 | 134.222             | 0.8639  | H H M     |



## Identified Benzene Species (4)

|    | Component Name              | Mol %  | Molecular         | Density | Structure                        |
|----|-----------------------------|--------|-------------------|---------|----------------------------------|
| 20 | 1,3-methyl-n-propylbenzene  | 0.1035 | Weight<br>134.222 | 0.8609  | CH <sub>3</sub>                  |
|    |                             |        |                   |         | H <sub>3</sub> C CH <sub>3</sub> |
| 21 | 1,4-diethylbenzene          | 0.0366 | 134.222           | 0.862   |                                  |
| 22 | 1,4-methyl-n-propylbenzene  | 0.0559 | 134.222           | 0.8584  | CH <sub>3</sub>                  |
|    |                             |        |                   |         | п,                               |
| 23 | n-butylbenzene              | 0.0582 | 134.222           | 0.861   |                                  |
|    |                             |        |                   |         |                                  |
| 24 | 1,3-dimethyl-5-ethylbenzene | 0.0613 | 134.222           | 0.88    | H H                              |
|    |                             |        |                   |         |                                  |

# Identified Benzene Species (5)

|    | Component Name              | Mol %  | Molecular<br>Weight | Density | Structure                          |
|----|-----------------------------|--------|---------------------|---------|------------------------------------|
| 25 | 1,2-diethylbenzene          | 0.0846 | 134.222             | 0.8799  | H H H H                            |
| 26 | 1,2-methyl-n-propylbenzene  | 0.2263 | 134.222             | 0.8736  | +                                  |
| 27 | 1,3-dimethyl-2-ethylbenzene | 0.024  | 134.222             | 0.8904  |                                    |
| 28 | 1,4-methyl-t-butylbenzene   | 0.0435 | 148.24              | 0.85    | CH <sub>3</sub><br>CH <sub>3</sub> |

## Identified Benzene Species (6)

|   |    | Component Name              | Mol %  | Molecular<br>Weight | Density | Structure       |
|---|----|-----------------------------|--------|---------------------|---------|-----------------|
| 2 | 29 | 1,2-dimethyl-3-ethylbenzene | 0.1057 | 134.222             | 0.8921  | H H H H H       |
| 3 | 30 | 1,2-ethyl-i-propylbenzene   | 0.0161 | 148.24              | 0.89    | CH <sub>3</sub> |
| 3 | 31 | 1,2,4,5-tetramethylbenzene  | 0.0614 | 134.222             | 0.8875  |                 |
| 3 | 32 | 1,2-methyl-n-butylbenzene   | 0.0163 | 148.24              | 0.89    |                 |

# Identified Benzene Species (7)

|    | CN                         | NA - LO/ | NA - I I  | D 14    | Characteria |
|----|----------------------------|----------|-----------|---------|-------------|
|    | Component Name             | Mol %    | Molecular | Density | Structure   |
|    |                            |          | Weight    | ı       | <br>        |
| 33 | 1,2,3,5-tetramethylbenzene | 0.0961   | 134.222   | 0.8903  |             |
| 34 | 1,2-methyl-t-butylbenzene  | 0.0054   | 148.24    | 0.89    |             |
| 35 | 1,2-ethyl-n-propylbenzene  | 0.1794   | 148.24    | 0.89    |             |
| 36 | 1,3-methyl-n-butylbenzene  | 0.0584   | 148.24    | 0.89    |             |

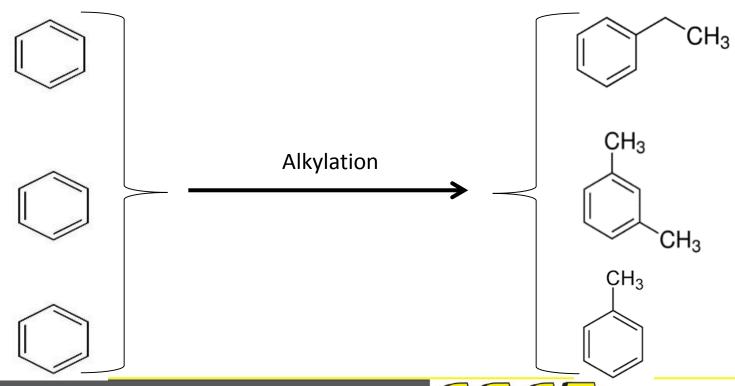
# Identified Benzene Species (8)

|    | Component Name         | Mol %  | Molecular<br>Weight | Density | Structure |
|----|------------------------|--------|---------------------|---------|-----------|
| 37 | 1,3-di-i-propylbenzene | 0.0616 | 162.272             | 0.89    |           |
| 38 | s-pentylbenzene        | 0.0516 | 148.24              | 0.89    |           |
| 39 | n-pentylbenzene        | 0.1    | 148.24              | 0.89    |           |
| 40 | 1,2-di-i-propylbenzene | 0.0857 | 162.272             | 0.89    |           |

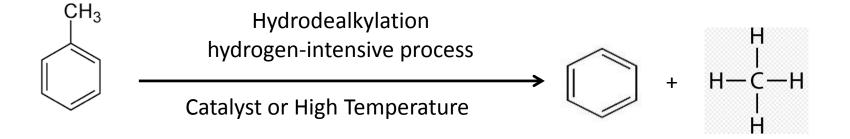
## Identified Benzene Species (9)

|    | Component Name           | Mol %  | Molecular<br>Weight | Density | Structure |
|----|--------------------------|--------|---------------------|---------|-----------|
| 41 | 1,4-di-i-propylbenzene   | 0.2529 | 162.272             | 0.89    |           |
| 42 | 1,4-ethyl-t-butylbenzene | 0.1247 | 162.272             | 0.89    |           |
| 43 | 1,3-di-n-propylbenzene   | 0.0519 | 162.272             | 0.89    |           |

## Identified Benzene Species (10)


|    | Component Name               | Mol %  | Molecular | Density | Structure                             |
|----|------------------------------|--------|-----------|---------|---------------------------------------|
|    |                              |        | Weight    |         |                                       |
| 44 | 1,3,5-triethylbenzene        | 0.0354 | 162.272   | 0.8897  | H H H H H H H H H H H H H H H H H H H |
| 45 | 1,2,4-triethylbenzene        | 0.0771 | 162.272   | 0.8897  | H H H H H H H H H H H H H H H H H H H |
| 46 | 1,4-methyl-n-pentylbenzene   | 0.0688 | 162.272   | 0.8897  |                                       |
| 47 | n-hexylbenzene               | 0.1058 | 162.272   | 0.8897  |                                       |
| 48 | 1,2,3,4,5-pentamethylbenzene | 0.1097 | 148.24    | 1       |                                       |




#### Concentrations

- BTEX: 1.7396 Mol%
- Other Alkylated Benzenes: 4.3167 Mol%

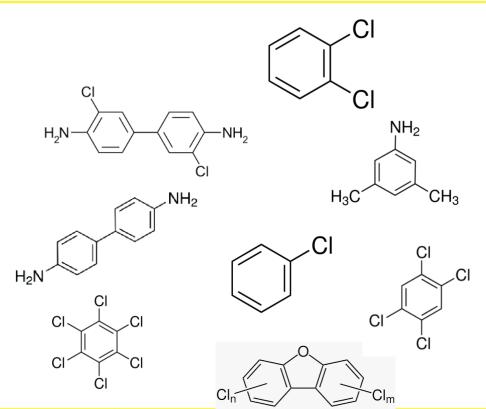
# Alkylation of Benzene



# Hydrodealkylation



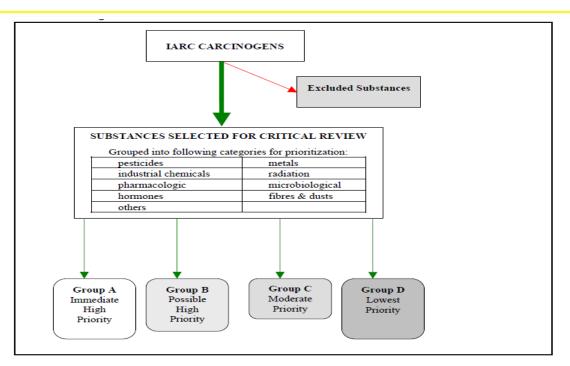
### Schedule 1 (July 11, 2018)


- Benzene
- Hexachlorobenzene
- Tetrachlorobenzenes
- Pentachlorobenzene
- 1,2-Benzenediol
- 1,4-Benzenediol

- Benzene, (chloromethyl)-,
- Benzene, 1-methyl-2nitro-
- Benzene, 1,2dimethoxy-4-(2propenyl)-



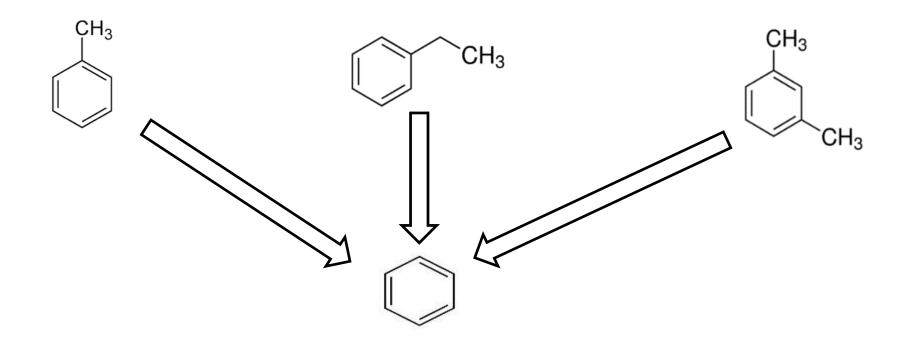
#### Priority Substances List 1 (PSL1), 1989


- 1,2-Dichlorobenzene
- 1,4-Dichlorobenzene
- 3,5-Dimethylaniline
- Benzidine
- Chlorobenzene
- Hexachlorobenzene
- Polychlorinated Dibenzofurans
- Tetra/Trichlorobenzenes
- PAHs, Toluene, Benzene, Xylenes



#### Priority Substances List 2 (PSL2) (CEPA) December, 1995

- Phenol
- Nonylphenol


#### CAREX Canada – Prioritization Process Occupational



CAREX Canada is a national surveillance project that estimates the number of Canadians exposed to substances associated with cancer in workplace and community environments.



#### Does A Reverse Process Exist?



### An Example of Dealkylation

#### Remember...

- BTEX: 1.7396 Mol%
- Other Alkylated Benzenes: 4.3167 Mol%

#### Conclusion and Suggestions

- Alkylated benzene compounds deemed to be toxic due to their structural similarity with BTEX compounds.
- Toxicity and carcinogenicity of all benzene compounds need to be assessed.
- Any petroleum product must be assessed for new benzene compounds.
- Pyrolysis derivatives of benzene contain products can be measured for potential hazard.
- PIONA GC-FID is an easy to operate instrument and cost effective for alkylated benzene content analysis.





#### **Laboratory solutions**

Environmental,

Energy, Mining,

Agri-food, Industrial

**Transportation** 

Life Sciences

# Thank You

**Questions and Discussion** 



