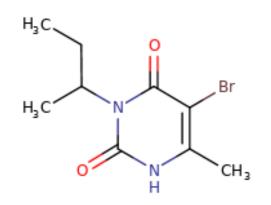


Bromacil residues in soil and groundwater at contaminated sites - Do they matter?

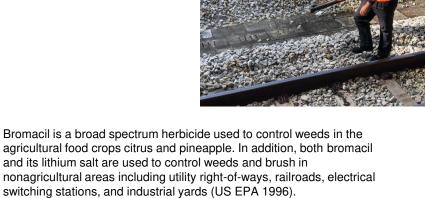

By: Karl Bresee, B.Sc., PBD, P.Biol. Intrinsik Corp.

> April 23 to 25, 2019 EnviroTech 2019 Hyatt Regency, Calgary

Outline

- History and use
- Environmental fate and partitioning
- Environmental quality guidelines
- Case Study
- Risk Characterization
 - Toxicity
 - Environmental degradation
 - Groundwater modelling
- Conclusions

 $C_9H_{13}BrN_2O_2$



History and Use

- Broad-spectrum herbicide
- Part of uracil herbicide family
- Inhibits plant growth through the inhibition of photosynthesis
- Registered as pesticide in the U.S. in 1961

Environmental Fate and Partitioning

Property	Value	Reference]_
Molecular weight	261.12 g/mol	SRC 2013	
Henry's law constant	0.0117 atm-m ³ /mol	SRC 2013	Not Volatile
Vapour pressure	1.1E-07 mmHg	SRC 2013	
Water solubility	324 mg/L	SRC 2013	Soluble
Half-life in soil	275 days	US EPA 2012	
	???	US EPA 2012	Persistent
Half-life in groundwater	<u> </u>	US EFA 2012	

Environmental Fate and Partitioning

• Fugacity modeling (US EPA 2012)

Environmental Media	Air (%)	Water (%)	Soil (%)	Sediment (%)
Released to soil	<1%	6.9	93	<1
Released to water	<1%	99	<1%	<1%

Environmental Quality Guidelines

Media ⁽¹⁾	Human Contact	Potable Water	Eco- Contact	Freshwater Aquatic Life	Irrigation	Livestock Watering
Soil [mg/kg]	2,000	7	0.2	0.009	NGA	2
Ground Water [mg/L]	NGA	0.95	0.44	0.005	0.0002	1.1
Surface Water [mg/L]	NGA	0.95	NGA	0.005	0.0002	1.1

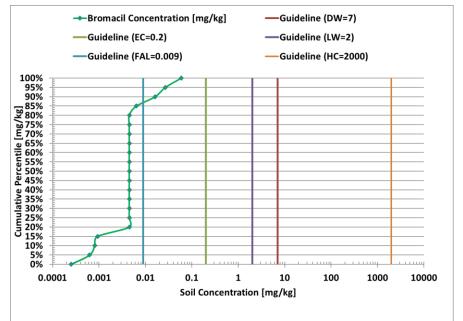
(1) Assumed agricultural land use and fine grained soils (AEP 2016).

Case Studies

- 1. Power Station
- 2. Abandoned Well Site

Case Study #1 – Soil Concentration

Sample Depth	Mean	Min	Мах	Ν	Agricultural Guideline (mg/kg) ⁽²⁾
0 – 1.5	0.0068	<0.005	0.059	70	2,000 (HC)
mbgs					7.0 (DW)
					0.2 (EC)
					0.009 (FAL)
					2 (LW)
>1.5	0.027	<0.009	0.045	12	2,000 (HC)
mbgs					7.0 (DW)
					0.2 (EC)
					0.009 (FAL)
					2 (LW)


1) Average calculated assuming that non-detects were present at a concentration equivalent to the method detection limit (MDL).

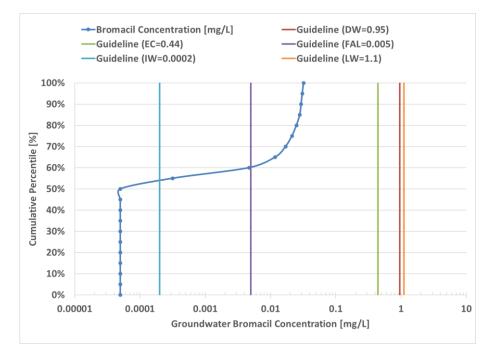
2) Value obtained from AEP (2016).

Notes:

HC (Human Contact); DW (Drinking Water); EC (Eco-contact); FAL (Freshwater Aquatic Life); LW (Livestock Watering)

Shading indicates an exceedance of a specific guideline

Case Study #1 – Groundwater Conc.


Mean	Min	Мах	N	Agricultural Guideline ²
0.0097	<0.000	0.032	14	0.95 (DW)
	1			0.44 (EC)
				0.005 (FAL)
				0.0002 (IW)
				1.1 (LW)

- 1) Average calculated assuming that non-detects were present at a concentration equivalent to the method detection limit (MDL).
- 2) Value obtained from AEP (2016).

Notes:

DW (Drinking Water); EC (Eco-contact); FAL (Freshwater Aquatic Life); Irrigation Water (IW); LW (Livestock Watering)

Shading indicates an exceedance of a specific guideline

Case Study #2 – Soil Concentration

Sample Depth	Mean	Min	Мах	N	Agricultural Guideline (mg/kg) ⁽²⁾	Bromacil Concentration [mg/kg] Guideline (IW; <mdl) </mdl)
0 – 1.5	0.0041	0.0003	0.01	16	2,000 (HC)	95% 90%
mbgs					7.0 (DW)	85%
					0.2 (EC)	80%
					0.009 (FAL)	
					2 (LW)	
>1.5	0.0054	0.0003	0.069	34	2,000 (HC)	2 50% 2 45%
mbgs					7.0 (DW)	₩ 40% ₩ 35%
					0.2 (EC)	tig 35%
					0.009 (FAL)	3 20% 15%
					2 (LW)	10% 5%

0.0001

0.001

0.01

Soil Bromacil Concentration [mg/kg]

0.1

1) Average calculated assuming that non-detects were present at a concentration equivalent to the method detection limit (MDL).

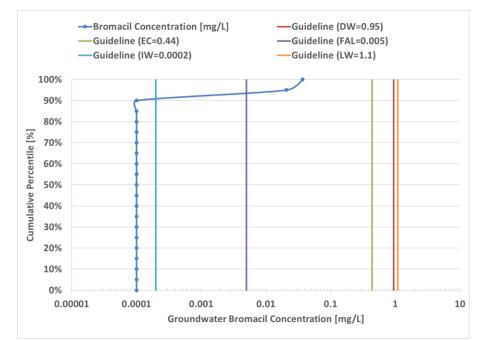
2) Value obtained from AEP (2016).

Notes:

HC (Human Contact); DW (Drinking Water); EC (Eco-contact); FAL (Freshwater Aquatic Life); LW (Livestock Watering)

Shading indicates an exceedance of a specific guideline

10


1

Case Study #2 – Groundwater Conc.

Mean	Min	Мах	Ν	Agricultural Guideline ²
0.0016 mg/kg	0.0001	0.037	164	0.95 (DW)
iiig/kg				0.44 (EC)
				0.005 (FAL)
				0.0002 (IW)
				1.1 (LW)

- 1) Average calculated assuming that non-detects were present at a concentration equivalent to the method detection limit (MDL).
- 2) Value obtained from AEP (2016).
- Notes:
- DW (Drinking Water); EC (Eco-contact); FAL (Freshwater Aquatic Life); Irrigation Water (IW); LW (Livestock Watering)

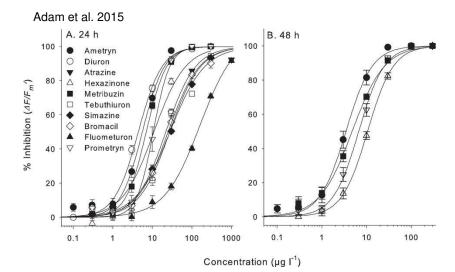
Shading indicates an exceedance of a specific guideline

Case Study – Screening Results

- Bromacil concentrations exceeded guidelines for the protection of freshwater aquatic life and irrigation watering.
- All other pathways of concern (i.e., drinking water, human contact, eco-contact, livestock watering) were below guidelines.
- Major concern is off-site risks to surface water (i.e., freshwater aquatic life and irrigation crops).
- No waterbodies within 300m but bromacil persistent

Risk Characterization

- Groundwater greater relevance for protection aquatic life.
- Toxicological basis of aquatic life and irrigation guidelines
- Bromacil degradation and environmental fate
- Groundwater transport modelling
- Data gaps and uncertainties


Risk Characterization – Toxicity

Toxic		Species	Toxicity endpoint		Co	ncenb	ntico	(µg·L	⁻¹)	
		L. macrochirus	48-h LC ₅₀							
		O. mykiss	48-h LC ₅₀							
	168	P. promeias	96-h LC ₅₀						-	
	Verti obratica	P. promeias	96-h LC.							
8	1	P. promeias	168-h LC 50							
Acute	-	P. promeias	24-h LC ₅₀						-	
		C. carpio	48-h LC ₅₀							
	after a	C. tentens	96-h LC ₅₀						0	
	try ottobrato	D. magna	48-h EC ₃₀							5
	, interest	D. magna	48-h LC 50							•
nic	Vettebrates	P. promelas	EC				-		I	
thread		H. lacustris	30-d EC ₅₀							
Ŭ	lants	C. terricola	30-d EC 30							
	P .	C. vulgaris	30-d EC ₅₀					•		
Ca	nadia	n Water Quality G 5.0 µg·L ⁻¹								
Toxicit	y end	points:	1	0º	101 1	10 ²	10 ³	104	10 ^s	104
 minary a critical value 							kuidel	ine		

- FAL guideline (0.005 mg/L) based on inhibition of photosynthesis in plants.
- This value is based on a 30-day EC50 of 0.05 mg/L in the most sensitive aquatic species (green algae) to which an uncertainty factor of 10 was applied (CCME 1999a).
- Clear difference between aquatic plants and invertebrates or vertebrates.
- US EPA (2018) has a similar limit of 0.0068 mg/L.

Risk Characterization - Toxicity

 Seagrass toxicity comparison to other photo-inhibitory herbicides.

Risk Characterization – Toxicity

- Irrigation guideline (0.0002 mg/L)
 based on inhibition of growth in plants (e.g., 30% reduction in biomass).
- This value is based on maximum allowable toxic concentration (MATC) of 0.02 mg/L in the most sensitive plant (cucumber) to which an uncertainty factor of 100 was applied (CCME 1999b).
- Guideline of 0.0006 mg/L also developed for cereals and pasture grasses.

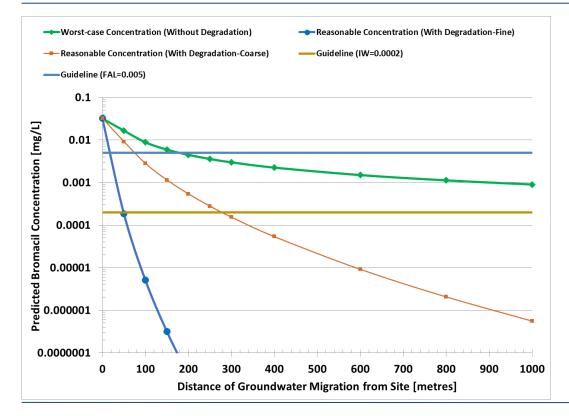
Risk Characterization - Degradation

- Bromacil is mobile in soil, soluble in water and detected in groundwater when used as a herbicide in relation to agricultural use (Zhu and Liu 2002).
- More persistent and less mobile in soils with higher organic matter content.
- Degradation rates vary (2-8 months) with soil organic matter content with a conservative half-life of 275 days (US EPA 2012).

Risk Characterization - Degradation

- No acceptable degradation rate of bromacil in aquatic systems.
- Based on the US EPA (2012) for risk assessment when single half-life value is available or limited:
 - Multiply by 3 (275 x 3 = 825 days) to estimate conservative value for soil; and
 - Multiple soil value by 2 to estimate groundwater halflife (825 x 2 = 1,650 days).
- Values used for risk assessment.

Risk Characterization - Modelling


- Groundwater transport modelling (AEP 2016)
- Maximum soil at Site #1 was 0.059 mg/kg
- Soil leachate predicted to be 0.13 mg/L
- Groundwater concentration at site predicted to be 0.034 mg/L
- Maximum measured groundwater concentration at site was 0.032 mg/L
- DF1 Partitioning of the contaminant between soil, soil vapour and soil pore water (0.45);
- DF2 Leaching of the contaminant through the unsaturated zone to the groundwater table (1.0);
- DF3 Mixing and dilution of leachate into groundwater (3.86); and,
- DF4 Saturated zone transport of the contaminant to a down-gradient receptor (1.0).

 $GW[\frac{mg}{L}] = \frac{Soil[\frac{mg}{kg}]}{DF1 \times DF2 \times DF3 \times DF4}$

Risk Characterization – Modelling

- Predicts how concentrations of bromacil in groundwater decrease with increasing distance.
- Based on the Domenico and Robbins (1985) groundwater transport model from CCME (2006).
- Assumed t_{1/2}=1,650 days.

Risk Characterization – Modelling

- The predicted concentration without degradation represents a worst-case and unrealistic concentration scenario as degradation is expected to be active to some extent in the saturated zone.
- Therefore, the predicted concentrations with degradation presents a reasonable scenario (i.e., saturated zone degradation half-life of 1,650 days was considered conservative).

Conclusions

- Risks to aquatic life are not expected as the Site is not near (i.e., within a 500 metres) an existing water body.
- Risks to aquatic life are not expected as predicted groundwater concentrations are expected to fall below FAL guidelines with 50 to 200m of the Site.
- Risks to crops via irrigation needs to be considered pathway operable near the Site.

Questions?

References

- Adam D. Wilkinson, Catherine J. Collier, Florita Flores & Andrew P. Negri. 2015. Acute and additive toxicity of ten photosystem-II herbicides to seagrass Scientific Reports. Volume 5, Article number: 17443
- AEP (Alberta Environment and Parks). 2016. Alberta Tier 1 Soil and Groundwater Remediation Guidelines.
- ATSDR (Agency for Toxic Substances and Disease Registry). 2001. Toxicological Profile for 1,2-Dichloroethane.
- CCME (Canadian Council of Ministers of the Environment). 1999a. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Bromacil. ISBN 1-896997-34-1
- CCME (Canadian Council of Ministers of the Environment). 1999b. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses. Bromacil. ISBN 1-896997-34-1
- CCME (Canadian Council of Ministers of the Environment). 2006. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. Winnipeg, MB. ISBN – 10 1-896997-45-7 PDF.
- Domenico, P.A. and Robbins, G.A. 1985. A new method of contaminant plume analysis. Groundwater. 23(4):476-485.GOA (Government of Alberta). 2014. Environmental Quality Guidelines for Alberta Surface Water. Water Quality, 2014, No. 1. July, 2014.
- SRC (Syracuse Research Corporation). 2013. FatePointers Search Module. Website: http://esc.syrres.com/fatepointer/search.asp
- US EPA (United States Environmental Protection Agency). 1996. R.E.D. Facts Bromacil. Prevention, Pesticides And Toxic Substances (7508W). EPA-738-F-96-013. August 1996.
- US EPA (United States Environmental Protection Agency). 2012. Memorandum Registration Review: Preliminary Problem Formulation for Environmental Fate and Ecological Risk, Endangered Species, and Drinking Water Assessments for Bromacil and Bromacil Lithium Salt (Case No. 0041). Office of Chemical Safety and Pollution Prevention. May 22, 2012.
- US EPA (United States Environmental Protection Agency). 2018. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. Available at: <u>https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk</u>
- Zhu, Y. and Q.X. Li. 2002. Movement of bromacil and hexazinone in soils of Hawaiian pineapple fields. Chemosphere 49: 669-674.

