

Catalytic Ozonation: A Promising Technology for Removal of VOCs from Air

Presented by: Ednali Zehavi

Environmental Division, Saskatchewan Research Council (SRC)

Jafar Soltan

PhD, PEng, professor, University of saskatchewan

April 23-25, Calgary, AB

Air pollution

Any contamination that disturbs the natural composition and chemistry of air

Outdoor air pollution

Pollution emissions

Pollutants Sulphur oxides

Nitrogen oxides

Particulate matter

Carbon monoxide

Non-methane volatile organic compounds

How do VOCs cause smog?

Canada VOCs emission ranking

Canada VOCs emissions by source

The oil and gas industry was the main source of VOC emissions in 2015 with 693 kt emitted (37% of total emissions).

Paints and solvents and home firewood burning were also important sources contributing 18% (326 kt) and 12% (230 kt) of total emissions.

VOCs emissions by province and territory

Effect on indoor air

Indoor air pollution

Indoor air pollution is a greater threat to humans than outdoor air pollution.

Concentration of VOCs in indoor and outdoor air

City	Ypsilanti			Ann Arbor				Dearborn				
Indoor / Outdoor	Indo	or	Outdo	oor	Indo	or	Outdo	or	Indo	or	Outdo	oor
Statistics	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Benzene	4.06	5.59	0.77	0.28	3.47	8.35	0.73	0.23	3.06	3.86	1.67	0.88
Toluene	28.00	33.37	1.56	0.84	15.61	30.49	1.14	1.51	14.82	29.61	4.25	2.75
p-xylene,m-xylene	9.77	10.45	0.85	0.41	15.89	51.07	1.59	5.07	9.01	15.44	5.22	1.99
1,2,4-Trimethylbenzene	3.71	5.16	0.29	0.14	2.29	5.81	0.21	0.15	3.59	7.53	1.10	0.69
Styrene	0.90	1.06	0.04	0.08	0.28	0.36	0.02	0.04	0.62	0.49	0.09	0.06
Naphthalene	6.16	15.64	0.14	0.10	1.68	2.49	0.38	0.77	3.34	7.88	0.42	0.23
1,4-dichlorobenzene	12.31	52.65	0.16	0.47	1.29	3.65	0.03	0.04	4.83	21.33	0.20	0.29
Chloroform	0.75	0.75	0.04	0.03	0.22	0.33	0.06	0.02	1.33	2.23	0.13	0.37
Carbontetrachloride	1.21	1.23	0.74	0.25	0.91	0.21	0.72	0.23	1.09	0.64	1.11	0.45
Trichloroethylene	0.04	0.20	0.01	0.04	0.02	0.04	0.01	0.03	0.06	0.11	0.04	0.03
Tetrachloroethene	0.46	0.49	0.19	0.24	0.65	0.85	0.22	0.18	1.28	3.82	0.56	0.45
a-Pinene	21.26	33.90	0.37	0.26	14.78	31.23	0.29	0.17	5.76	8.59	0.21	0.40
d-Limonene	17.63	11.45	0.21	0.11	10.63	16.09	0.15	0.12	37.46	44.65	1.05	2.18
n-Nonane	6.86	23.30	0.15	0.17	0.71	1.15	0.09	0.08	1.64	2.50	0.32	0.21
n-Hexadecane	0.80	0.96	0.02	0.04	0.28	0.16	0.00	0.00	0.62	0.74	0.02	0.08

Concentration unit (µg m⁻³)

What's in indoor air?

Diesel exhaust, carbon black, dust, smoke, fibers, plant, matter, hair, pollen

Household odours and gases

pet, smells, cigarette, smoke, chemicals, sink or drain smells

Paints, glues, varnishes, cleaning supplies, furniture, vehicle exhaust, cigarette

Bacteria, mould (fungi), yeasts, mites and virus

Indoor VOCs

- > Carcinogenicity in some of the compounds
- Damage to the liver
- > Damage to kidneys and central nervous system
- > Eye, nose and throat irritation
- ➢ Headaches
- Loss of coordination; nausea; shortness of breath
- > Allergic skin reactions; fatigue and dizziness

Effect of indoor air pollution on outdoor air

VOCs Removal

The Government of Canada estimates that 14,400 premature deaths per year in Canada can be linked to air pollution.

16 https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/air-quality/toluene-indoor-air-environment-workplace-health.html http://onlineresize.club/news-club.html

Key impacts of air pollution

Standards	
IAQ Standards	 ASHRAE NIOSH OSHA
ASHRAE Standard 62.1-2010	 Different types of VOCs can be of concern even at very low concentration in indoor air
Ventilation (Primary method)	 Substantial energy (up to 50% of the total energy consumed in a building) is consumed during this process

Current technologies for removal of VOCs

Catalytic Ozonation

e strong	400
oxidizing	
agent	9

enhancing
VOCs
removal
efficiency
at low
temperature

 using transition
 metal oxides
 instead of
 noble
 metals

Catalytic Ozonation

Improving elimination of low concentration pollutants

Reducing reaction temperature

Reducing energy use Reducing cost

Effective catalysts for catalytic ozonation

Transition metal oxides

• Oxides of Mn, Co, Cr, Fe, Cu

Supports

• Alumina, Zeolite, Silica

Manganese oxides have the highest activity in removal of VOCs from air.

Catalyst preparation methods

Synthesis of Solid Catalysts, edited by Krijn P. de Jong, 2009, John Wiley & Sons.

Experimental setup for catalytic ozonation

Summary of our findings

Catalytic oxidation vs catalytic ozonation

Single VOC (120 ppmv) streams of toluene, benzene and acetone; WHSV = 300 L h⁻¹ g⁻¹, $[O_3]$ = 1100 ppmv

Activity of single and dual metal catalysts

Effect of metal content on catalytic activity

Effect of promters content in activity of catalyst

Commercialization

Ongoing research

Synergetic degradation of VOCs by Vacuum Ultraviolet Photolysis and Catalytic Ozonation

Ongoing Research

Concluding remarks

- Catalytic processes based on controlled reactions, with ozone gas, are effective methods to oxidize VOCs under controlled conditions with minimum consumption of energy.
- Removal of indoor air VOCs lead to reduced make up air, more energy saving.
- Efficiency of this process are demonstrated for most common VOCs including toluene, benzene, and acetone.

Acknowledgements

Canadian Centre canadien Light de rayonnement Source synchrotron

More References

- Matthew M. Coggon, Brian C. McDonald, Alexander Vlasenko, Patrick R. Veres, François Bernard, Abigail R. Koss, Bin Yuan, Jessica B. Gilman, Jeff Peischl, Kenneth C. Aikin, Justin DuRant, Carsten Warneke, Shao-Meng Li, and Joost A. de Gouw, Environ. Sci. Technol. 2018, 52, 5610–5618.
- <u>https://www.canada.ca/en/health-canada/services/air-quality.html</u>
- <u>http://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=en&n=64B9E95D-1&wbdisable=true</u>
- Zhiping Ye, Jean-Marc Giraudon, Nathalie De Geyter, Rino Morent and Jean-François Lamonier, Catalysts 2018, 8, 91; doi:10.3390/catal8020091
- E. Rezaei, J. Soltan, Chem. Eng. J. 198–199 (2012) 482–490. doi:http://dx.doi.org/10.1016/j.cej.2012.06.016.
- E. Rezaei, J. Soltan, N. Chen, Appl. Catal. B Environ. 136–137 (2013) 239–247. doi:http://dx.doi.org/10.1016/j.apcatb.2013.01.061.