

Road Salt Forensics:

Using Cl⁻/Br⁻ Ratios and Other Indicators to Differentiate Road Salt and Other Impacts in Groundwater

Outline

- A Road Salt "Primer"
- Environmental Impacts
- The Regulation of Road Salt
- Using Road Salt Forensics

Road Salt

- Granular sodium chloride was first used to de-ice roads on an experimental basis in 1938.
- Many municipalities across Canada use sodium chloride (Halite or Rock Salt) as an economical means of de-icing roads
- 5,000,000 tonnes per year across Canada on roadways alone
 - City of Calgary uses 30,000-40,000 tonnes per year
 - City of Toronto uses 130,000-150,000 tonnes per year
- NaCl enters the environment during snowmelt runoff, also from wastewater plants as it is not removed during treatment
- · Adverse effects on plants and aquatic life
- Na and CI regulated in groundwater in Alberta

'You can taste it': Road salt making GTA rivers, streams as salty as seawater

Scientists warn high chloride level in GTA waterways is damaging ecosystem, wildlife, ground water sources

revor Dunn · CBC News · Posted: Feb 02, 2018 4:00 AM ET | Last Updated: February 2

How Road Salt Works

- At 0°C / 32°F water molecules organize themselves into crystal, becoming ice.
- Salt ions (Na⁺ & Cl⁻) move between the water molecules, taking up space, preventing them from organizing into crystals.
- Water molecules now need to be colder before they can overcome the Na⁺ and Cl⁻ interference to crystalize.
- Limitation...< -18 °C the capacity for salt to de-ice is diminished

Environmental Impacts

Water:

- Dissolved Na⁺ and Cl⁻ washed into storm sewers and surface water systems
- Seepage into groundwater supplies
- 10% of aquatic species are affected by Cl⁻ concentrations ≥ 240 mg/L (Health Canada)
- 4 separate Toronto creek samples:
 - 1,390-4,310 mg/L
 - Affects oxygen and nutrient distribution in the aquatic ecosystem

Soils:

- Plants that thrive on salt-rich soils can become invasive
- High salt content can be deadly to some animal life

Reprinted from:

National Cooperative Highway Research Program Report 577: "Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts

Regulations

Parameter	BC	AB	SK	МВ	ON	CCME	
Drinking Water							
Sodium (mg/L)	200	200	200	200	NV	200	
Chloride (mg/L)	250	250	250	250	NV	250	
Groundwater							
Sodium (mg/L)	NV	200	200	200	490	NV	
Chloride (mg/L)	100	100	250	250	790	NV	
Surface Water (protection of freshwater aquatic life)							
Sodium (mg/L)	NV	200	NV	NV	NV	NV	
Chloride (mg/L)	1500	100	120	NV	NV	120	
Soil							
Sodium (ug/g)	150	NV	NV	NV	NV	NV	
Chloride (ug/g)	100	NV	NV	NV	NV	NV	

Salinity and Sodicity

- Salinity assessed through electrical conductivity (EC) measurements
- Sodicity assessed through Sodium Absorption Ratio (SAR) which measures the proportion of sodium to calcium and magnesium in soil solution

$$SAR = \frac{[Na^+]}{\sqrt{1/2\left([Ca^{2+}] + [Mg^{2+}]\right)}}$$

 Sodicity and Salinity in Alberta measured on a saturated paste extract vs. set ratio in Ontario

Alberta Guidelines

Fable 2.2	Soil Quality	Guidelines for	Unrestricted	Land Use

Parameter		Rating Categories					
		Good	Fair	Fair Poor			
Topsoil ^c	EC dS/m (salinity)	<2 ^a	2 to 4	4 to 8	>8		
	SAR (sodicity)	<4	4 to 8	8 to 12	>12 ^b		
Subsoil ^e	EC dS/m (salinity)	<3	3 to 5	5 to 10	>10		
	SAR (sodicity)	<4	4 to 8	8 to 12	>12		

a Some plants are sensitive to salts at EC < 2 dS/m (e.g., flax, clover, beans, wheat, peas, some garden crops).

b Material characterized by SAR of 12 to 20 may be rated as poor if texture is sandy loam or coarser and saturation % is less than 100.

c Topsoil: surface A horizons on the control area, or the equivalent surface soil on the reclaimed site. Subsoil: B and C horizons and the upper portion of the parent material.

SAR, EC and Salinity can be impacted by sodium and chloride from road salt

Elevated Sodicity & Salinity

- EC, SAR and Chloride are often included in a metals/inorganics lab package
- Hits can be problematic when it wasn't identified as a COPC in the Phase I
 - Is it background?
 - Is it road salt?
 - Is it mine?

- Site located in urban core of Toronto
- Parking lot since 1966
- Coal plant and fueling facility between 1912-1920
- Site to be remediated to remove soils impacted with salt, PAHs and metals
- Salt present in shallow aquifer above standards

- Depth to groundwater in overburden wells 1.45m
- Sodium and chloride in shallow groundwater exceed site condition standards.
- A deep monitoring well installed for vertical delineation

- MW2-D installed in weathered shale
- Deep Na⁺ and Cl⁻
 > 2X shallow aquifer
- Is the deep salinity associated with road salt?

Cl⁻, Br⁻ and l⁻ in Road Salt

- Chloride, bromide and iodide are present in salt
- Chloride is generally 40-8000 times more abundant in nature than bromide
- The ratio of the ions are used distinguish pristine groundwater from wastewater sources and other anthropogenic sources including road salt
- A variety of analytical methods are available IC, Colourimetric, NAA
- Br⁻, Cl⁻ and l⁻ move conservatively in groundwater and are relatively stable excellent markers
- Halite (road salt/rock salt) has a distinguishable very high (> 5000) ratio of Cl⁻/Br⁻ vs natural saline water which is much lower (i.e. 150)
- Iodide also used as a ratio, however low detection limits required
- ICP/MS method now available at Maxxam

Mass Ratio CI⁻/Br⁻ Concentration Plots

Figure 2. Plot of Cl/Br ratio versus chloride concentration used to determine 5 water types: fresh water, brine, fresh water septic, fresh water connate, and halite

[3].

Molar Ratio CI⁻/Br⁻ Concentration Plots

	Sample ID /					
Parameter	MW1	MW3	MW12-17	MW2-S	MW2-D	
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Sodium	1201	1613	1449	2511	1302	
Chlorine (Cl)	1530	2150	1820	2370	2450	
Bromine (Br)	< 1	<1	< 1	< 1	20.6	
Iodine (I)	< 5	< 5	< 5	< 5	< 5	
Cl/Br <	3060*	4300*	3640*	4740*	119	
Chloride/Sodium	1.6	1.9	1.7	1.7	4.4	

*bromine was not present above a reporting limit of 1 mg/L. To calculate a ratio of Br/Cl, the ½ the reporting limit was used

Report Conclusions:

- ✓ All shallow groundwater Cl/Br ratios are consistent with road salt
- ✓ Deep aquifer inconsistent with shallow groundwater and consistent with natural brine

What's Next

- ✓ Evaluation of the tool on more road salt impacted sites
- Application in upstream Oil & Gas differentiation of salt impacts based on formation
- ✓ Salinity packages:
 - Salinity 1 EC, pH, SAR, Na, CI, Br
 - Salinity 2 EC, pH, SAR, Na, Cl, Br, I, Cl/Br, Cl/I

