



#### Subsoil Salinity Tool (SST) Update Version 3.0

#### Key Changes to Guideline Calculations, Software Tool Use, and Data Collection

Anthony Knafla, M.Sc., P.Biol, DABT Greg Huber, M.Sc., P.Eng., PMP Jimmy Mercado

> EnviroTech 2019 April 24, 2019 Calgary, Alberta

### Acknowledgements

- Petroleum Technology Alliance of Canada (PTAC)
- Program of Energy Resource and Development (PERD)
- Alberta Environment and Parks (AEP)
- Alberta Energy Regulator (AER)
- City of Calgary

#### **Presentation Overview**

#### Introduction to SST Version 3.0

- General information and conceptual model
- Changes from Version 2.5.3

#### Chloride module

- Key changes to aspects of chloride model

#### • SAR / sodium module

- General information and conceptual model
- Case study

#### SST certification course

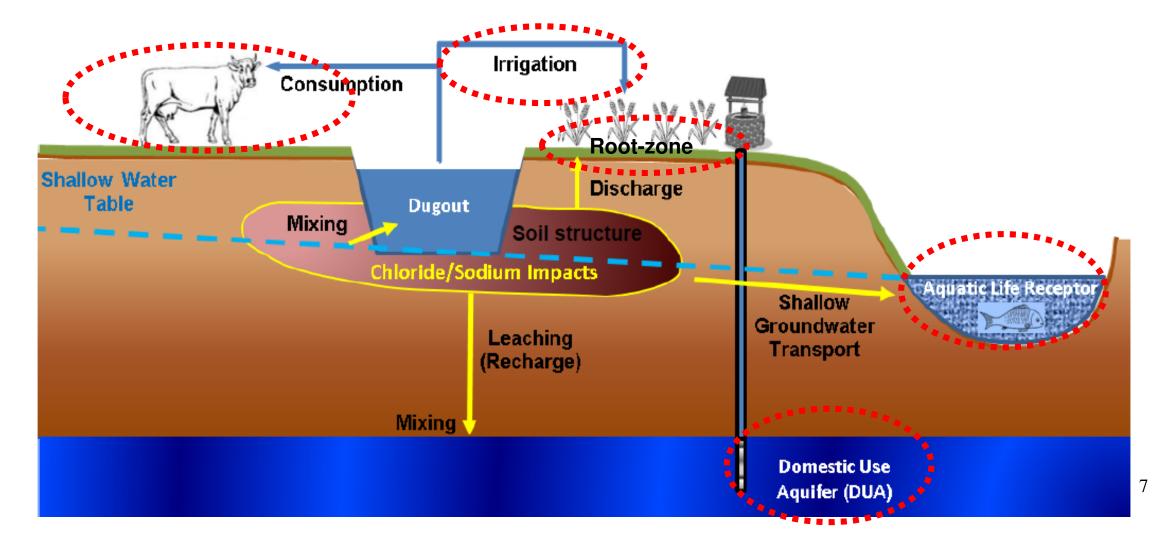
Information and dates

#### **Introduction to SST Version 3.0**

# **Subsoil Salinity Tool**

- Subsoil Salinity Tool (SST) allows generation of Tier 2 subsoil chloride guidelines for below the root-zone (>1.5m)
  - Tier 1 guidelines for EC and SAR applicable in root-zone
- Introduced in 2008, several versions since then
  - Most recent is Version 2.5.3 from 2014
  - Version 3.0 to be released in 2019
- Considers key receptors for salinity to ensure minimal levels of risk both current-day and in future
- Generates subsoil chloride guidelines for up to 5 pathways
  - Overall guideline determined by most constraining pathway
  - Similar process as used for many Tier 1 guidelines

# **SST Conceptual Model**


- Five relevant pathways for subsoil chloride
  - Root-zone (upward transport)
     Livestock watering (migration into dugout)
  - Irrigation water (migration into dugout)
  - Aquatic life (lateral transport to aquatic receptor)
  - Domestic use aquifer (

quifer (downward transport to DUA)

- Same five chloride pathways for both Version 2.5.3 and 3.0
- Which pathway is most constraining a function of many factors
  - Soil properties
  - Groundwater properties
  - Nearby aquatic receptors
  - DUA depth

### **SST Conceptual Model**

 Versions 2.5.3 and 3.0 both consider chloride transport from impact area to each of five receptors



### SST Version 2.5.3 (example output)

#### Here, irrigation water is most constraining pathway

| SST - Criteria Calculation                                                                                                                                                                                                                             |                   | <b>U I J</b>                 | _       |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|---------|---------------|
| Government                                                                                                                                                                                                                                             |                   |                              |         |               |
| Guideline Calculation                                                                                                                                                                                                                                  | Area 1            |                              |         |               |
|                                                                                                                                                                                                                                                        |                   |                              |         |               |
| Pathway                                                                                                                                                                                                                                                | Guideline (mg/kg) | Peak Breakthrough Time (yrs) |         |               |
| Root Zone                                                                                                                                                                                                                                              | 2700              | <25                          | 7       |               |
| Livestock Watering                                                                                                                                                                                                                                     | 4300              | <25                          | 7       |               |
| Irrigation Watering                                                                                                                                                                                                                                    | 230               | <25                          |         |               |
| Aquatic Life                                                                                                                                                                                                                                           | 260               | > 50                         |         |               |
| DUA                                                                                                                                                                                                                                                    | 520               | >100                         |         |               |
|                                                                                                                                                                                                                                                        |                   |                              |         |               |
| Minimum Chloride Guideline (mg/kg):                                                                                                                                                                                                                    | 230               |                              |         |               |
| Equivalent Groundwater Guideline (mg/L):                                                                                                                                                                                                               | 980               |                              |         |               |
| Guideline Constrained by (pathway):                                                                                                                                                                                                                    | Irrigation        |                              |         |               |
|                                                                                                                                                                                                                                                        |                   |                              |         |               |
| Drainage Rate Root Zone                                                                                                                                                                                                                                | 6 mm/yr Recharge  |                              |         |               |
| Drainage Rate DUA                                                                                                                                                                                                                                      | 15 mm/yr Recharge |                              |         |               |
| <ol> <li>Groundwater guideline calculated using an equivalent pore water concentral.</li> <li>Groundwater guideline only applies to impacted area.</li> <li>Click on "Report" button below to view the report. When viewing the pdf report.</li> </ol> |                   | etc.                         | 2.5 0.3 | ł             |
| M                                                                                                                                                                                                                                                      |                   |                              | Report  | Help<br>Close |

#### SST Version 3.0

- Numerous updates to chloride module •
  - Updated protocols and calculations
     Expanded capabilities

- Updated documentation
- SAR and sodium module now included along with chloride

| 😻 SST V3.0 PRE-RELEASE (SS | iT ver3 example.dat )                                                                                                                                      |                                                                                                            |                                                                                   | $\times$ |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------|
| 3. Background              | information                                                                                                                                                |                                                                                                            |                                                                                   |          |
|                            | Water Table Depth Range (m):<br>Sulfate in Soil (mg/kg):<br>Carbonate in Soil (mg/kg):<br>Bicarbonate in Soil (mg/kg):<br>Calculated TDS in Groundwater (m | <= 2 m ~ ?<br>150 ?<br>0 ?<br>0 ?<br>ng/L): 1027                                                           | **Please ENTER "0" if there is no Carbonate or Bicarbonate data.<br>Example input |          |
| Tier 2B Information        | Water Table Depth (m):<br>Background TDS in Shallow Ground                                                                                                 |                                                                                                            | <sup>2</sup> page                                                                 |          |
|                            | Depth (m):1.0 to 1.5Number of Samples:4Sat %:50.0EC Average (dS/m):1.5SAR Average:1.5                                                                      | EC 95th Percentile:<br>SAR 95th Percentile:<br>EC Guideline (dS/m):<br>SAR Guideline:<br>EC Buffer (dS/m): |                                                                                   |          |
| Alberta                    | Environment<br>and Parks                                                                                                                                   | <b>M</b>                                                                                                   | Chloride SAR Save Previous<br>SAR Save as Main Help                               |          |

9

### SST Version 3.0 General Info and Model Updates

- Numerous updates to protocols and functionality
- Maximum chloride impact depth now 15 m
  - Previously 10 m
- Maximum water table depth now 15 m
  - Previously 10 m
- Maximum DUA depth now 25 m
  - Previously 20 m
- Soil properties now harmonized with Tier 1
  - Fine vs coarse soils now determined by sieve, not hydrometer
  - 1.4 bulk density for fine soils, 1.7 bulk density for coarse
  - Hydraulic conductivity defaults harmonized to 1x10<sup>-6</sup> and 1x10<sup>-5</sup> m/s
- Drainage rates now more harmonized with Tier 1
  - Selected drainage rates adjusted to match 12 and 60 mm/year
- Enhanced handling of subareas
  - Simultaneous calculation of up to five subareas rather than sequential for more streamlined guideline development

#### SST 3.0 Example Chloride Input Screen

#### **Example of three subareas for chloride** •

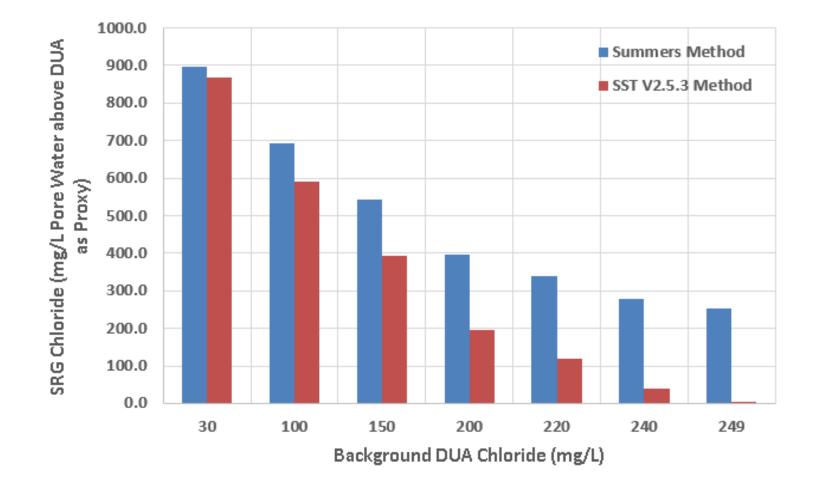
| 😻 SS | V3.0 PRE-REL    | EASE (SST ve  | r3 example.d                       | at )                       |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     | _                                      |                  |
|------|-----------------|---------------|------------------------------------|----------------------------|---------------------------------------------|-------------------------|----------------------------|----------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------------------------------------|----------------------------------------|------------------|
|      | hloride         |               |                                    | tion                       |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     |                                        |                  |
| Imp  | act informatio  | n (for entire | site)                              |                            | Source Length                               | for Entire S            | ite (m):                   | ?                          |                                                              |                                               |                                               |                                  |                                                     |                                        |                  |
|      |                 | Total num     | nber of SubA                       | reas at the site:          | 3                                           | × **                    | Minimum of 1               | or Maximum of 5 Areas.     | ?                                                            | Original EC Buf                               | fer (dS/m): 1.5                               | i                                |                                                     |                                        |                  |
| Γ    | SubArea         | DUA BAF       | Aquatic<br>Life<br>Receptor<br>BAF | Source<br>Dimension<br>(m) | Distance to<br>Aquatic Life<br>Receptor (m) | Top of<br>Impact<br>(m) | Bottom of<br>Impact<br>(m) | Type of Root Zone Analysis | 95th Percentile<br>Chloride<br>Impacted Root<br>Zone (mg/kg) | Calculated EC<br>Impacted Root<br>Zone (dS/m) | New EC Buffer<br>Impacted Root<br>Zone (dS/m) | Average EC of<br>Backfill (dS/m) | Average<br>Saturation<br>Percent of<br>Backfill (%) | New EC Buffer<br>of Backfill<br>(dS/m) |                  |
|      | 1               | 0.5           | 0.6                                | 25                         | 250                                         | 1.5                     | ~ 12 · ~                   | Excavation and Backfill    | _                                                            |                                               |                                               | 1.3                              | 55                                                  | 1.7                                    |                  |
|      | 2               | 0.35          | 0.25                               | 40                         | 230                                         | 1.5                     | ~ 9 ~                      | Impacted Root Zone         | 130                                                          | 2.1                                           | 0.9                                           |                                  |                                                     |                                        |                  |
| ►    | 3               | 0.15          | 0.15                               | 50                         | 225                                         | 3                       | × 5 ×                      | Unimpacted Root Zone       | -                                                            |                                               |                                               |                                  |                                                     |                                        |                  |
|      | Total           | 1.000         | 1.000                              |                            |                                             |                         | × ×                        | ~                          | -                                                            |                                               |                                               |                                  |                                                     |                                        |                  |
|      |                 |               |                                    |                            |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     |                                        |                  |
|      |                 |               |                                    |                            |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     |                                        |                  |
|      |                 |               |                                    |                            |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     |                                        | *Layout, protoco |
|      |                 |               |                                    |                            |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     |                                        | details, and     |
| **   | NOTE: Sum of    | the BAF for   | all the SubAi                      | reas should be ea          | jual to 1                                   |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     |                                        | guidelines all   |
| Guid | eline Calculati | on            |                                    |                            |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  |                                                     |                                        | subject to final |
|      |                 |               |                                    |                            |                                             |                         |                            |                            | Calcul                                                       | ate Guidelin                                  | e                                             |                                  |                                                     |                                        | adjustments      |
|      | Mha             | ta 🗖          | Enviror                            | nment                      | <b>≋N</b>                                   |                         |                            |                            |                                                              |                                               |                                               |                                  | Save                                                | Previous Help                          | 11               |
|      | A (we           |               | anu Pa                             |                            |                                             |                         |                            |                            |                                                              |                                               |                                               |                                  | Save as                                             | Main                                   |                  |

#### **Chloride Module**

# **SST 3.0 Chloride Modeling Updates**

- Transport modeling calculations updated / enhanced for several pathways
- Root-zone pathway
  - refined upward transport modeling through unsaturated soils
  - Reduces conservatism via more refined diffusion estimates
- Aquatic life pathway
  - Enhanced transport modeling
  - Sentinel well option
- DUA pathway
  - Enhanced transport and dilution modeling
- Dugout pathways
  - Enhanced mixing calculations
- In some cases, 100 mg/kg closure criteria is not sufficient
  - consistent with new 2019 Tier 1 guidance

### **Aquatic Life Pathway Updates**


- Additional modeling performed to handle the faster potential groundwater velocities in coarse soils
  - Up to approximately 25 m/year
- Effective porosity of 0.25 no longer used
  - now uses Tier 1 total porosity of 0.47 (fine) and 0.36 (coarse)
- Pore water conversions for fine soils now give lower concentrations due to lower bulk density / higher porosity
  - Results in higher soil guidelines, all else equal
- Refined transport modeling for multiple subarea interactions
  - Reduces conservatism via use of neural network algorithm
- Sentinel well option provides for additional monitoring options

## **DUA Pathway Updates**

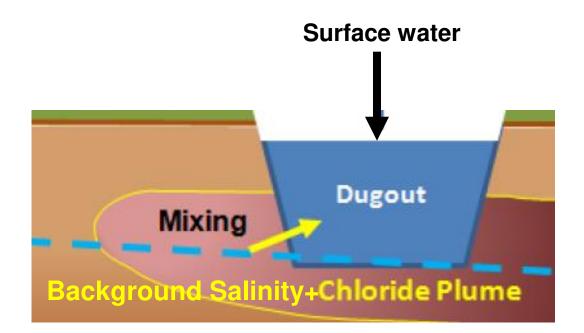
- Additional smoothing of guidelines introduced via intermediate drainage rates
- Pore water conversions for fine soils now give lower concentrations due to lower bulk density / higher porosity
  - Results in higher soil guidelines, all else equal
- Dilution into DUA ('Dilution Factor 3') now uses more flexible 'Summers' mixing model
  - Mass balance on background and impact concentrations
- Improved handling of subarea interactions
  - Some similar subarea over-conservatisms to be corrected as for aquatic life
  - Uses stepwise dilutions for subareas with multiple mixing calculations (less conservative, more accurate)
- Improved handing of background DUA chloride concentrations

### **DUA Mixing Model**

- Improved handling of background DUA chloride via Summers mixing model
  - Improved accuracy compared to previous 'buffer' method, particularly when background DUA chloride concentrations are high (approaching 250 mg/L drinking water guideline)



### **Dugout Pathway Updates**


- Improved handling of background salinity via mixing model
  - Improved accuracy compared to previous buffer method
  - Reduces frequency of highly-constraining irrigation guidelines
- Refined final dugout water targets
  - 3,000 mg/L TDS for livestock water (consistent with Tier 1)
  - 355 mg/L chloride for irrigation water

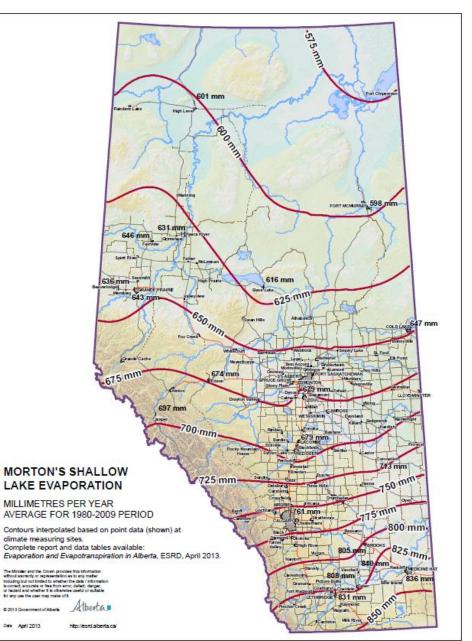
(from an Alberta-relevant range in chloride irrigation guidelines, equivalent to approximately 1 dS/m EC contribution from chloride)

- More elaborate mixing model including stronger effects from important input parameters
  - water table depth
  - climate information
  - shallow groundwater hydraulic gradient and conductivity
  - replaces the previous generic 3-fold and 10-fold mixing factors for coarse and fine soils

# **Dugout mixing model**

- Background salinity in shallow groundwater mixes with surface water in dugout, along with chloride impacts
  - Use of 'Summers' mixing model results in smoother and more refined guidelines than previous buffer method (and generally less conservative)




 Dugout depth now assumed to be 6 m rather than 4 m based on Alberta Agriculture sizing guidelines

### **Dugout mixing model**

**Step 8-11 Dimensions and Capacity (cubic yards)** 

| Chart for 21 Foot Depth |       |       |       |       |       |       |       |       |  |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Width (feet)            | 70    | 80    | 90    | 100   | 110   | 120   | 130   | 140   |  |
| Length (feet)           |       |       |       |       |       |       |       |       |  |
| 80                      | 1700  | 2100  | 2500  |       |       |       |       |       |  |
| 100                     | 2300  | 2800  | 3400  | 3900  | 4400  |       |       |       |  |
| 120                     | 2900  | 3600  | 4300  | 5000  | 5700  | 6300  | 7000  |       |  |
| 140                     | 3500  | 4400  | 5200  | 6000  | 6900  | 7700  | 8600  | 9400  |  |
| 160                     | 4100  | 5100  | 6100  | 7100  | 8100  | 9100  | 10100 | 11100 |  |
| 180                     | 4700  | 5900  | 7000  | 8200  | 9300  | 10500 | 11600 | 12800 |  |
| 200                     | 5300  | 6600  | 7900  | 9200  | 10500 | 11900 | 13200 | 14500 |  |
| 220                     | 5900  | 7400  | 8800  | 10300 | 11800 | 13200 | 14700 | 16200 |  |
| 240                     | 6500  | 8100  | 9700  | 11400 | 13000 | 14600 | 16200 | 17900 |  |
| 260                     | 7100  | 8900  | 10700 | 12400 | 14200 | 16000 | 17800 | 19500 |  |
| 280                     | 7700  | 9600  | 11600 | 13500 | 15400 | 17400 | 19300 | 21200 |  |
| 300                     | 8300  | 10400 | 12500 | 14600 | 16700 | 18700 | 20800 | 22900 |  |
| 320                     | 8900  | 11100 | 13400 | 15600 | 17900 | 20100 | 22400 | 24600 |  |
| 340                     | 9500  | 11900 | 14300 | 16700 | 19100 | 21500 | 23900 | 26300 |  |
| 360                     | 10100 | 12600 | 15200 | 17800 | 20300 | 22900 | 25400 | 28000 |  |
| 380                     | 10700 | 13400 | 16100 | 18800 | 21500 | 24200 | 27000 | 29700 |  |
| 400                     | 11300 | 14200 | 17000 | 19900 | 22800 | 25600 | 28500 | 31400 |  |
| 420                     | 11900 | 14900 | 17900 | 21000 | 24000 | 27000 | 30000 | 33000 |  |
| 440                     | 12500 | 15700 | 18800 | 22000 | 25200 | 28400 | 31600 | 34700 |  |
| 460                     | 13100 | 16400 | 19800 | 23100 | 26400 | 29800 | 33100 | 36400 |  |
| 480                     | 13700 | 17200 | 20700 | 24200 | 27600 | 31100 | 34600 | 38100 |  |

 Dugout sizing and mixing calculations taken from 'Quality Farm Dugouts' combined with updated Alberta evaporation info



#### **SAR / Sodium Module**

# **SAR / Sodium Module**

- Introduced to SST in Version 3.0
- Allows generation of standardized Tier 2 SAR and sodium guidelines for subsoil
  - Previously, only options for subsoil SAR were Tier 1 or Tier 2C
  - Tier 2A or Tier 2B depending on if monitoring wells are present
- Can be done in conjunction with chloride guidelines, or separately
- Accommodates up to five subareas (as per chloride)
- Same root-zone scenarios as chloride
  - Unimpacted root-zone
  - Excavation and backfill
  - Impacted root-zone

### **SAR / Sodium Module Inputs**

#### • Example with three subareas, three root-zone scenarios

| SAR SO       |         | nt 0 to 1.5 m (S     |                         | Background Subsoil In<br>Average Subsoi<br>Average |                                            |                                              |                               | Average Subsoil Sa<br>Average Subsoil Cla |                                                  | 50<br>20                                |  |
|--------------|---------|----------------------|-------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------|--|
| Tota         | al numb | er of SubArea        | s at the site:          | 3 × **Mi                                           | nimum of 1 or Max                          | kimum of 5 Areas.                            |                               |                                           |                                                  |                                         |  |
| Su           | ubArea  | Top of<br>Impact (m) | Bottom of<br>Impact (m) | Type of Root Zone Analysis                         | Impacted Root<br>Zone Average<br>EC (dS/m) | Impacted Root<br>Zone 95th<br>Percentile SAR | Backfill Average<br>EC (dS/m) | Backfill Average<br>SAR                   | Backfill Average<br>Saturation<br>Percentage (%) | Backfill Average<br>Clay Content<br>(%) |  |
| •            | 1       | 2 ~                  | ′ <b>5</b>              | Excavation and Backfill $\checkmark$               |                                            |                                              | 1                             | 0.5                                       | 45                                               | 25                                      |  |
|              | 2       | 1.5                  | ∕ <mark>3</mark> ⊻      | Impacted Root Zone                                 | 1.2                                        | 3                                            |                               |                                           |                                                  |                                         |  |
|              | 3       | 1.5 ~                | ′ <b>3</b> ⊻            | Unimpacted Root Zone                               |                                            |                                              |                               |                                           |                                                  |                                         |  |
| deline Calco | ulation |                      |                         |                                                    |                                            | Guideline                                    |                               |                                           |                                                  |                                         |  |

### **SAR / Sodium Module Outputs**

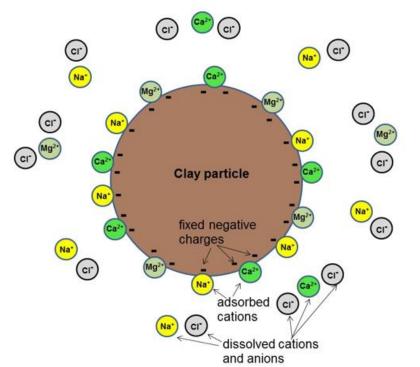
- Output screen shows subsoil SAR guideline plus subsoil sodium guidelines for two pathways
  - Displays guidelines for up to five subareas
  - Constraining sodium guideline and pathway identified for each area

😻 SAR Summary Output

|   | Pathway                                          | Guideline - SubArea 1 | Guideline - SubArea 2 | Guideline - SubArea 3 | Guide |
|---|--------------------------------------------------|-----------------------|-----------------------|-----------------------|-------|
| , | Rooting Zone (mg/kg Sodium)                      | 454                   | 493                   | 493                   |       |
|   | Irrigation Watering (mg/kg Sodium)               | 596                   | 971                   | 971                   |       |
|   |                                                  |                       |                       |                       |       |
|   | Constraining Pathway for Sodium                  | Root Zone             | Root Zone             | Root Zone             |       |
|   | Constraining Guideline for Sodium (mg/kg Sodium) | 454                   | 493                   | 493                   |       |
|   | SAR Guideline for Soil Structure                 | 22                    | 19                    | 19                    |       |

# SAR / Sodium Conceptual Model

- Three pathways considered for subsoil SAR/sodium:
- Soil structure pathway
  - Potential for elevated subsoil SAR to cause excessive hydraulic conductivity loss current-day or in future
- <u>Root-zone pathway</u>
  - upward sodium migration potentially causing future root-zone SAR exceedance
- Irrigation water pathway
  - Sodium impacts mixing into dugout potentially causing SAR exceedance in irrigation water
- Other potential pathways such as DUA, livestock water, or aquatic life either sufficiently protected by chloride guidelines, or have no relevant SAR/sodium guidelines


### **Soil Structure Pathway**

- Based on evaluating potential for excessive hydraulic conductivity (K<sub>sat</sub>) losses due to SAR
  - Eg,  $K_{rel}$  of 25% indicates a 4-fold  $K_{sat}$  loss
- Relative K<sub>sat</sub> losses a function of both SAR and EC
  - Higher EC reduces Ksat losses, but EC levels may reduce over time
- SAR threshold curves derived for fine and coarse soils based on combination of literature results and Alberta soils
  - Used to derive SAR guideline for soil structure based on background EC



#### **Root-Zone Pathway**

- Elevated subsoil sodium has potential to migrate upward into root-zone and cause future Tier 1 SAR exceedance
  - Function of drainage rate, impact depth, root-zone characteristics
- Sodium transport similar to chloride, but generally slower and more attenuated due to cation exchange reactions
  - Modelled extensively with 'LeachC' software suite
- Migration of sodium into low SAR soils results in sodium exchanging onto clay particle and releasing calcium or magnesium
  - Results in slower sodium transport and more gradual SAR increase than would otherwise be predicted

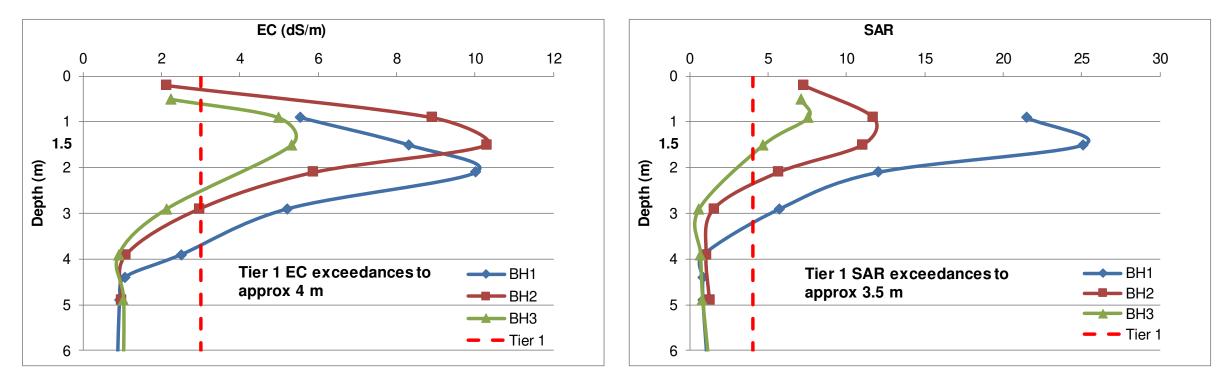


26

# **Irrigation Water Pathway**

- Elevated subsoil sodium has potential to migrate into dugout water and cause irrigation water SAR exceedance
- Irrigation water SAR calculated via updated mixing model
  - same updated mixing calculations as for chloride
  - also influenced by background subsoil cation concentrations and surface water runoff concentrations
    - Dugout Mixing Background Salinity+Sodium Impacts

Surface water


- Background subsoil cations (eg, Ca+Mg) estimated based on background subsoil EC and SAR
  - new data requirement

#### Additional SAR/Sodium Data Requirements

- Same site data generally required for SAR/sodium as for CI
  - Site location and climate
  - Land use
  - Soil texture (coarse vs fine)
  - Vertical and lateral delineation
  - Root-zone background data (including SAR)
  - Water table depth (measured or estimated)
  - Vertical gradients (if available)
  - Backfill data (assumed or measured)
- Additional subsoil background data also required
  - Required for all subsoil SAR / sodium assessments (Tier 2A/2B)
  - Background subsoil data required to 4.5-6 m depth
- Additional texture data also required
  - Clay content data required for root-zone, subsoil, backfill

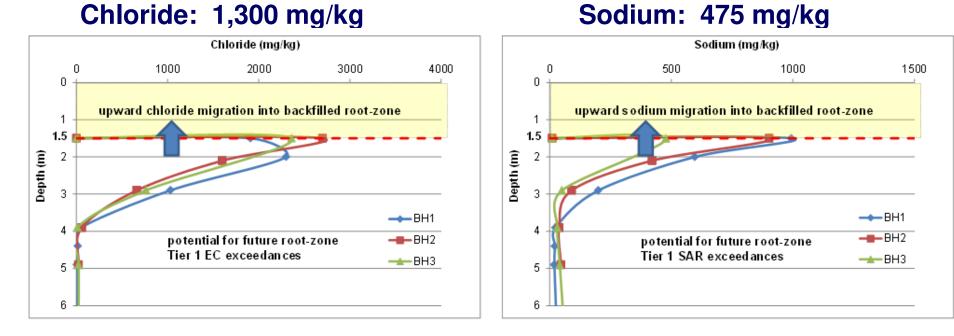
#### **Case Study**

- Fine-grained agricultural soil with Tier 1 EC and SAR exceedances due to produced water
  - Tier 1 exceedances extend to 3.5-4 m



- Root-zone at minimum must be remediated to Tier 1
  - How deep to remediate subsoil to protect backfilled root-zone?

# Case Study (cont'd)


#### Other inputs

- 1.5 m preliminary excavation depth Slight recharge (1 mm/year $\downarrow$ )
- 4 m bottom of impacts

- Backfill EC=1 dS/m, SAR=1

- 7 m water table (dugout pathway excluded)

#### Preliminary subsoil guidelines for root-zone pathway



#### Both chloride and sodium have exceedances, must excavate further

# Case Study (cont'd)

- Now try 2 m excavation depth
- Updated subsoil guidelines

Chloride: 1,700 mg/kg

#### Chloride (mg/kg) Sodium (mg/kg) 1000 2000 3000 4000 500 1000 1500 n n n 2 m excavation 2 m excavation 1.5 1.5 Depth (m) Depth (m) 3 -BH1 -BH2 potential for future root-zone BH2 potential for future root-zone Tier 1 EC exceedances Tier 1 SAR exceedances 5 6

#### Sodium: 676 mg/kg

- Chloride still has exceedances, but sodium does not
  - Excavation to ~2.5 m required for chloride at some boreholes
  - No additional excavation beyond 2 m required for sodium
- In this case, subsoil SAR guideline (~16) also met
  - not always the case

### **Case Study Summary**

- Individual cases vary substantially based on <u>many</u> factors:
  - Chloride and sodium impact depth Impact magnitude
  - Drainage rate

- Root-zone / backfill parameters

- Soil texture

-Other receptor proximity

- Etc, etc
- For example, guidelines are reduced if above example had deeper impacts (to 6 m) and discharge scenario instead (1 mm/year upward):
  - Chloride guideline drops from 1700 mg/kg $\rightarrow$ 870 mg/kg
  - Sodium guideline drops from 676 mg/kg $\rightarrow$ 358 mg/kg
- Additional excavation depth then required to meet subsoil chloride / sodium guidelines

### Case Study Summary (cont'd)

- Generating SST guidelines for subsoil chloride, SAR, sodium generally an iterative process
- Frequent opportunities to optimize / refine excavation scenarios and minimize excavation volumes
  - particularly when multiple subareas
  - particularly when both chloride and SAR/sodium impacts
- SST training / certification required to use tool appropriately and effectively

#### **SST Certification Course**

## **SST Certification Course**

- 3.5-Day Full Certification Course (Version 3.0)
  - Covers chloride, SAR, and sodium aspects
  - Course includes theory, case studies, tool practice
  - Comprehensive exam on final day
  - Passing exam mark results in official SST Certificate to allow submittal of assessments
  - Covers both Version 2.5.3 and Version 3.0
  - Full course <u>not</u> required if already SST-certified in previous version
- 1-Day Update Course (Version 3.0)
  - Optional, open to already-certified participants
  - Discusses chloride updates in Version 3.0
  - Discusses SAR/sodium module including examples
  - No exam, no formal certification

#### \*\*\* NEXT COURSE DATES TBD \*\*\*

#### Thank you! Questions?

SSThelp@eqm.ca