

Leak Detection & Air Monitoring

Progression

Direct Reading Instruments

Tubes and pump (colourimetric), PID gas detector, weather station/air monitor

Canister Sampling

Tube Sampling

Active with Soil Vapour Intrusion TD tubes (SVI)

Passive Fenceline Monitoring

Passive TD tubes - Carbopak X media

Update

Regulations Respecting Reduction in the Release of Volatile Organic Compounds

Public Access To Data

Sarnia, ON facilities

Direct Reading Instruments

Cost & Reliability

Cost (est. CAD)

Tubes (Colorimetric) & Pump

- · Quick and easy, instant results
- Colourimetry can be prone to positive and negative interference
- Requires knowledge of leak or plume location

\$600 + \$100

Handheld PID (Photo-Ionization Detector)

- PID provides a great starting point in determining if there is a problem
- · Potential for interferences
- Requires knowledge of where the leak or the plume may be

\$800 - \$7500

Rent/Week ~\$350

Weather Station • GC Instrumentation

- Accurate, but only situated in one location, plume must cross its sampling area to accurately measure VOCs
- Must be maintained and calibrated by qualified staff

\$30k+

Cost Prohibitive Installing & locating multiples

Silonite™

- 100% inertness tested prior to shipment.
 Polished internal surface prior to Silonite™ coating the most inert surface possible.
- All Entech Canisters are coated in Silonite™ to ensure there is no chance of corrosion and the subsequent loss of reactive compounds.
- Silonite™ canisters are the only 'inertnessrepairable' canisters on the market. No need to fear canister inertness testing, Entech's renewal process can retun old Silonite™ can to often better than new conditions.
- Externally electro-polished "after" Silonite™ coating to provide a more analytical and professional look.

SUMMA

- The metal oxides found in SUMMA canisters can actually be a catalytic in promoting certain chemical reachtions.
- Because of the limited inertness of the SUMMA canister, a certain amount of water vapor is actually needed to allow Air Toxic compounds to remain stable. Even aromatic hydrocarbons can be lost to the surface of a SUMMA canister if enough water isn't present.

1L, 1.4L and 6L can be utilized for air sampling:

- · soil gas/soil vapour
- · ambient air
- · indoor air easy to use

Cost (est. CAD)

4 - 24hr Canisters, q2wk, T015

~\$33k

(equip+analysis-40wk)

It is critical when requesting air sampling equipment to provide sufficient information regarding the sampling event(s):

- What type of air is being sampled?
- What is the length of time being sampled?
- · What criteria need to be met?

Thermal Desorption (TD) Tubes

Media/Resin Adsorption

- SVI tubes are used in active sampling (soil vapour intrusion or ambient air) to analyze for VOC's (TO-17)
- · TD tubes contain 3 types of media
 - · weak.
 - medium
 - strong adsorbent
- Tubes can be reused; the process of desorbing "strips" the tube of all collected VOC's and an additional thermal cleaning process, followed by proofing (analysis of cleaned tubes)

15.

Cost (est. CAD)

5-TD Tubes, q2wk, TO-17

~\$40k

(equip-pumps-analysis-40wk)

Thermal Desorption Tube Sampling (USEPA TO-17)

For active sampling

- Multi-adsorbent TD tube (PerkinElmer SVI) that offers wide VOC molecular range
- Large safe sampling volumes (SSV)
- · Good water management
- · Low media background

For passive sampling

A specific single-adsorbent TD tube & cap

Thermal Desorption (TD) Tubes

- Passive sampling using single media Carbopak X TD tubes
- EPA 325 method allows for continuous sample collection
 - up to 25 VOC compounds and is a cost effective technique that aids in LDAR (leak detection and repair) at petrochemical facilities.
- TD tubes are also used for other types of testing including 4-PCH
 - a compound used for evaluation of LEED certification, and Siloxanes

Cost (est. CAD)

10-TD Tubes, q2wk, 25 VOCs

~\$45k

(equip-pumps-analysis-40wk)

Sampling - EPA 325 Tube Carbopack X

- Carbopack X is a hydrophobic granular graphitized carbon black (GCB) adsorbent with a large surface area of 240 m2/g that allows it to retain a broad range of VOCs
- Inner surface of SS tubes are inert coated to protect sample integrity over the relatively long sampling period
- Sorbents medium range is optimal for BTEX (C6-C8) & 1,3butadiene (C4) sampling, as well as various other VOCs

How Does it Work?

Uptake Rates

Passive Sampling -Maximizing Efficiency

How does passive sampling work?

- Sorbent inside the tube is exposed at one end for a known amount of time, in which diffusion dictates concentration equilibrium.
- Any extreme changes in wind vector (convective forces) are mitigated by the use of diffusion caps.
- Values are calculated by relating the compound quantity adsorbed on the sorbent to the relative rate of diffusion (uptake rate) of the compound.

Sorbent Material
Tube Opening
Ambient Air

Sampling - Carbopack X VOC Uptake Rates

Compound	Carbopack X uptake rate (ml/min) ^a
1,3-Butadiene	0.61±0.11
1,1-Dichloroethene	0.57±0.14
3-Chloropropene	0.51±0.3
1,1-Dichloroethane	0.57±0.1
1,2-Dichloroethane	0.57±0.08
1,1,1-Trichloroethane	0.51±0.1
Benzene	0.66±0.06
Carbon tetrachloride	0.51±0.06
1,2-Dichloropropane	0.52±0.1
Trichloroethene	0.5±0.05
1,1,2-Trichloroethane	0.49±0.13
Toluene	0.52±0.14
Tetrachloroethene	0.48±0.05
Chlorobenzene	0.51±0.06
Ethylbenzene	0.46±0.07
m,p-Xylene	0.46±0.09
Styrene	0.5±0.14
o-Xylene	0.46±0.12
p-Dichlorobenzene	0.45±0.05

⁽a) McClenny, W.A., et. al., J. Environ. Monit. 7:248-256.

Silonite Canisters

- Quantitative recovery of low MW VOCs (C1-C3 range)
- Prior knowledge of VOCs air concentration is not a controlling factor in sampling (no saturation or safe sampling volume issues)
- Silica coated canisters provide best stability of VOCs, including sulphur & other reactive compounds. No pump needed, canisters under vacuum
- Multiple (sample dilutions) & different (instruments) analyses are possible from the same canister

Thermal Desorption (TD) Tubes

- Good recovery of higher MW, and polar VOCs (e.g. siloxanes, low MW PAHs, etc.)
- Prior knowledge of VOCs air concentration is important, safe sampling volumes (SSV) need to be adhered to, Vinyl Chloride is limiting factor (10L) (active sampling)
- Passive sampling extended sampling times without a pump. Sampling applications include: fenceline(EPA 325), buildings(walls, ducts), confined space, pipeline, well, etc.
- Volume of air collected can be adjusted to meet low regulatory limits, single complete tube desorption.
 Small size - personal & area sampling: easy to ship

Proposed Canadian Regulations Petroleum Sector: Fenceline Monitoring

- The proposed regulations will require facility operators to establish fenceline monitoring programs (sampling & analysis)
- Proposed requirements for quantity & location of sampling, sample collection frequency
 & laboratory analysis align with specific elements of U.S. EPA Methods 325A & 325B
- The proposed fenceline monitoring requirements would come into force on Jun. 1, 2019 with the collection & analysis of samples required as of Fall 2019*.
 - This would enable the establishment of a base year for monitoring facility emissions that are not yet subject to LDAR requirements of the proposed Regulations

* This is the amended date by Environment Canada, promulgation pending

Proposed Canadian Regulations Petroleum Sector: Fenceline Monitoring

- The proposed regulations would require facility operators to establish fenceline monitoring programs (sampling & analysis)
- Proposed requirements for quantity & location of sampling, sample collection frequency
 & laboratory analysis align with specific elements of U.S. EPA Methods 325A & 325B
- The proposed fenceline monitoring requirements would have come into force on Jan. 1,
 2018 with the collection & analysis of samples-promulgation pending -
- update anticipated: Jun 1, 2019*
 - This would enable the establishment of a base year for monitoring facility emissions that are not yet subject to LDAR requirements of the proposed Regulations

*Amended to the later date by Environment Canada, and confirmed that this is the most recent update as of Mar 15, 2019.

Publicly Posted Benzene Data From Fenceline Program

Summary of some of the historical data from 2016-2018 for benzene from facilities monitoring in the Chemical Valley (Sarnia, ON).

- https://www.suncor.com/about-us/refining/ sarnia-refinery
- https://www.shell.ca/en_ca/about-us/projectsand-sites/sarnia-manufacturing-centre.html https://iolfencelinemonitoring.ca/en/Sarnia
- https://www.ineos-styrolution.com/portal/ zh_CN/environment

alsglobal.com

Delivering reliable analytical data with exceptional service from experts who care about your projects.

Right Solutions • Right Partner

The power to question is the basis of all human progress. 99

Indira Gandhi

Darlene Hoogenes-Stastny ALS Air Quality Specialist

E darlene.stastny@alsglobal.com

T +1 519 652 6044

M -1 519 719 4201