

Global Analyzer Systems Ltd.

#### Measurement Errors of NO<sub>2</sub> using Heated Metal Converters in Chemiluminescence Analyzers



A presentation by:

#### Charles Odame-Ankrah, PhD, PChem (Research Manager, Global Analyzer Systems Ltd.)

roTec

2019





- 1) Project Objectives
- 2) Atmospheric Chemistry of NO<sub>x</sub> (Summary)
- 3) Upgrading a Chemiluminescent Analyzer
- 4) Field Trials
- 5) Conclusions



### Project Objectives: True NO<sub>2</sub>?

### Create a device that enables existing analyzers to SELECTIVELY measure NO<sub>2</sub>

- Linear conversion over a wide dynamic range
- Simple external installation
- Fast response & high resolution
- Conversion efficiency >96%

#### In order to....

- Reduce the potential over-reporting of  $NO_2/NO_x$
- Meet evolving Federal Regulations



#### Nitrogen Oxides in the Troposphere



### $NO_x$ , $NO_y$ , $NO_z$ & Chemiluminescence



 $NO_{y} = NO_{x} + HNO_{3} + NO_{3}^{-} + PANs + NH_{3} + CINO_{2} + 2N_{2}O_{5}...$ 



### Measuring $NO_2$ with $NO-O_3$ CL Method

### Common Technique

Indirect Measurement: Convert NO<sub>2</sub> to NO (detect via Chemiluminescence of ozone and NO)

1) Heated Metal Converters
(Mo/SS)
+ Efficient
+ Long Life
+ Reliable
- NOT SPECIFIC

2) Photolytic Converter

+ Selective to NO<sub>2</sub>

+ Efficient

+ Long Life

+ Reliable



### Heated Metal Converters are not Specific!



- Heated metal catalytic converters are non-selective.
- Can it always measure NO<sub>x</sub> accurately?
- Can NO<sub>2</sub> be overestimated?
- What are the implications?



### NO<sub>2</sub> may be overestimated



# Chemiluminescence - Principle of Operation

State 1: NO Measurement Mode





# Chemiluminescence - Principle of Operation

State 2: NO<sub>x</sub> Measurement Mode

Heat changes NO<sub>z</sub> into NO<sub>2</sub>!

Moly

NO, NO<sub>2</sub>, NO<sub>2</sub>, etc.

# $NO_x$ and $NO_2$ can be overestimated by up to 50%<sup>1</sup>

Reported as  $NO_x$  Measurement... but is it? "NO<sub>x</sub>" Measurement – NO Measurement =  $NO_2 + NO_7$ 

03



**Global Analyzer Systems** 

<sup>1</sup>E.J. Dunlea et al. Atmos. Chem. Phys., 7, 2691-2704 (2007)

h<sub>v</sub> from only

Reported as NO<sub>2</sub>

#### Global's Uniquely designed Photolysis Cell







Patent number: WO2017173552A1 or US20190086337

**Design** benefits

- ✓ This provides a unique flow pattern under reduced pressure
- ✓ Fast response time
- ✓ No memory effects



#### Selective NO<sub>2</sub> Photolysis



J.P. Burrows, et al., J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998)

J. Stutz, et al., J. Geophys. Res. 105, 14585-14592 (2000)

Global Analyzer Systems

GLOBA

S.P. Sander, et al., JPL Publication **10-6**, Jet Propulsion Laboratory, Pasadena, 2011. http://jpldataeval.jpl.nasa.gov

# Challenges of Photolysis of NO<sub>2</sub>?

- Light Source Instability
- Back Reactions



$$NO_2 + h_v \rightarrow NO + O_3$$

- Limited Ranges/ Linearity
- Interference Artifacts



### Global's Approach

 Patented Technology (PhoNO)

Patent number: WO2017173552A1

- Stable device
- Real-time data logging
- Defensible data
- Negligible Interference



PhoNO integrated into Thermo 42i





### Interference rejection testing



Jordan et al. (2019) Laboratory evaluation of a new photolytic nitrogen dioxide converter for ambient air monitoring. (submitted)



#### Calibration of PhoNO



### Lab Results – Linearity Testing





## Lab Results – NO<sub>z</sub>



### **Environment Canada Testing**



# **Field Trials**



#### 2016 Field Trial: CEMs Installation at:

Fort Saskatchewan



#### 2017 Field Trials: Ambient Installations at:

- Fort Air Partnership (FAP), Fort Sask. Station
- US EPA, Lake Michigan Ozone Study



#### Current Field Trial: Ambient Installation at:

Calgary Regional Air Zone (CRAZ), Central Station



# Fort Air Partnership Field Trial

- Fort Saskatchewan (Old AB **Environment Station**)
- November 28, 2016 March 09, 2017
- Average temp: -10°C









Stable light source

### FAP Data – Daytime NO<sub>2</sub> Concentrations





### Lake Michigan Ozone Study, 2017

- Sheboygan, Wisconsin, USA
- Collaborated with US-EPA ORD
- May 21, 2017 to June 22, 2017







### Lake Michigan Ozone Study, 2017 Preliminary data



### Ongoing CRAZ Co-locate Study



### Calgary Central Station Near Inglewood Bird Sanctuary



### Ongoing CRAZ Co-locate Study Preliminary data



### Evidence of NO<sub>2</sub> overestimation



# What benefits will PhoNO offer?

- No interference from water vapour or ammonia
- Able to handle high concentrations of NO<sub>2</sub>
- Real-time monitoring of performance





# True NO<sub>2</sub> – What's it to you?

- Eliminate over reporting
- Increased understanding of chemical processes (e.g. process optimization)
- Meet evolving Federal Regulations
- Understand the link between NO<sub>2</sub>, health effects, and environmental impacts
- Accurate data for modeling emissions and pollution transport



N

0

#### Conclusion

- Create a device that enables existing analyzers to SELECTIVELY measure NO<sub>2</sub>
- Linear conversion over a wide dynamic range:
   From low ppb up to as high as 37ppm
- Simple external installation
   Up to 7' away from the analyzer
- Fast response & high resolution
   Making analyzers more robust
- Conversion efficiency >96% (98-100% typical)
   Achieved up to 100% stable conversion
- Direct replacement for Mo converters
   Low-cost add-on to existing analyzers

And most importantly.... No extensive analyzer modifications required to install



Acknowledgements Thank you to everyone who has

contributed to this project, including:





Environment and Climate Change Canada Environnement et Changement climatique Canada







Research and Development Team Global Analyzer Systems Ltd



FORT AIR PARTNERSHIP We Monitor the Air You Breathe



### **US-EPA ORD**



**Global Analyzer Systems** 



CRAZ CALGARY REGION AIRSHED ZONE

Other Collaborators: Dr. Allan Legge

### **Questions?**



