

Stormwater Reuse

October 7, 2020 ESAA

Bill Berzins

- Beware of "caution fatigue"
- Be compassionate with family, friends, co-workers and others: stress levels are extremely high due to concerns about health, economy and closed-in spaces

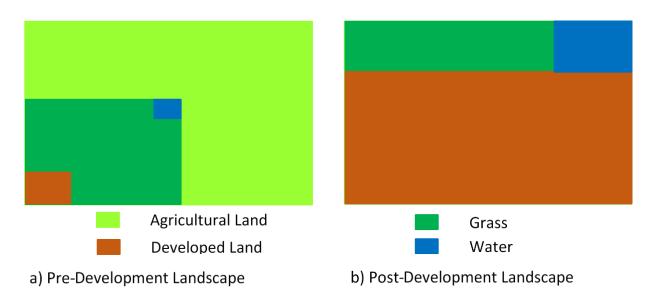
Stormwater

"Stormwater is runoff from rainstorms, hailstorms or melting snow that is shed from urban and rural landscapes. Stormwater picks up pollutants, including trash and suspended and/or dissolved solids that impact the quality of downstream water bodies."

Calgary Metropolitan Region Board, 2019

Governing Laws and Issues

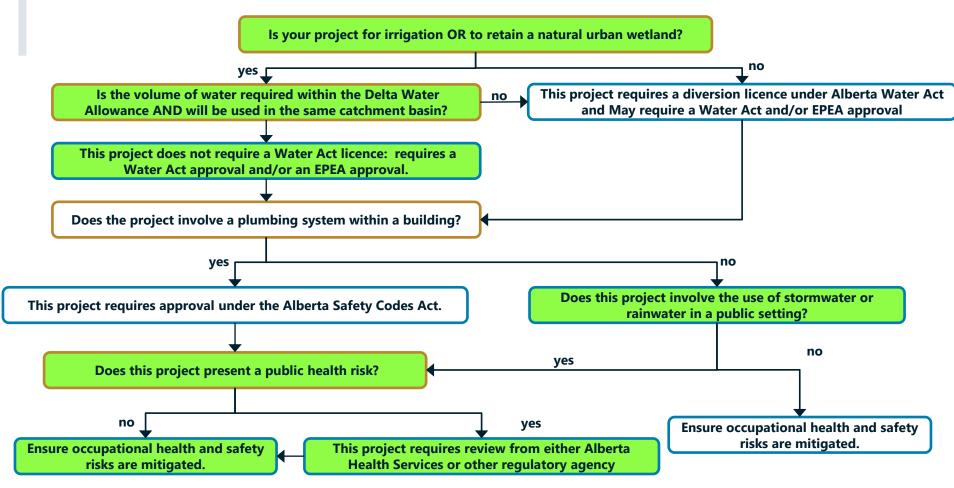
- Provincial regulations govern quantity and quality of runoff
- Municipalities implement bylaws that control engineered structures and operational controls
- Issues within many prairie watersheds:
 - source water quality concerns related to upstream land uses
 - relatively flat landscape that increases susceptibility to overland flooding during extreme events
 - limited availability to receiving waters
 - air quality concerns (including H2S odours) associated with organic matter in ponds that sit idle under ice for extended period
 - co-mingling of hail and snow that often affect the sizing and performance of storage and control structures



How is Stormwater Regulated in Alberta

- Water Act Regulation 119/1993 Wastewater and Storm Drainage Regulation (consolidated up to AR170/2012) establishes regulatory requirements
- AR119/1993 references Standards and Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems (Part 5 March 2013 – 70 pages)
- AEP refers practitioners to Stormwater Management Guidelines for the Province of Alberta (1999 196 pages)
- Discharge to a waterway or wetland requires an EPEA approval which meets Environmental Quality Guidelines for Alberta Surface Waters (2018) to protect aquatic life, agricultural and recreational users
- Code of Practice can apply to an adequate outfall if it doesn't measurably alter natural peak flow, change the location/direction of flow or cause an adverse effect on aquatic environment
- Licence under Water Act is required to collect and use storm water unless a Master Drainage Plan is in place
- Delta water calculation is used to determine what quantity is available for use on site without approval
- Many storm water systems rely on annual renewal of Temporary Diversion Licence (TDL)

Delta Water Assessment Tool



 $\Delta W = AW_{Post} - AW_{Pre}$

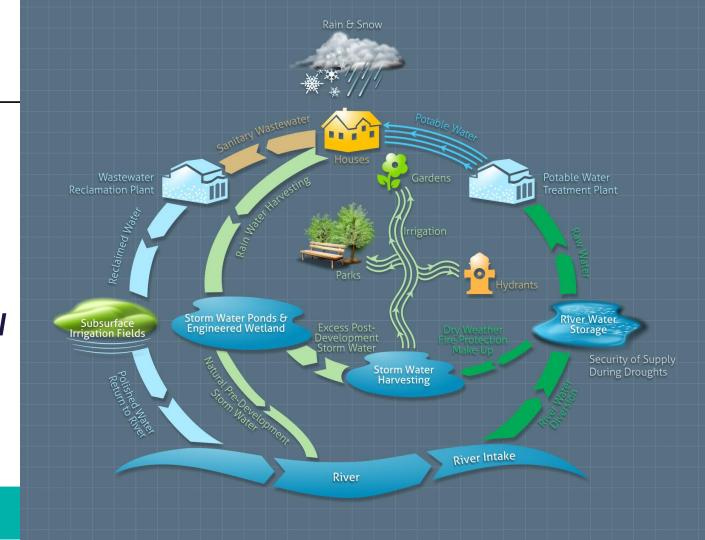
 ΔW =Delta Water, AW_{Pre}=Available Water in Pre-Development, AW_{Post}=Available Water in Post-Development

Islam et al, 2019

Approval Required to Irrigate Parks with Storm Water

Worldwide Examples of Stormwater Reuse

- New York City worked with State regulators and Watershed Agricultural Society to implement Catskill farm program to implement pollution control on upstream farm lands
- Sydney Park (Australia) treats 860 million litres of stormwater to meet 10% of City's demands
- Orange County (California) uses treated wastewater for landscape irrigation, cooling and aquifer protection
- Singapore recycles treated sewage for industrial and drinking water uses during droughts

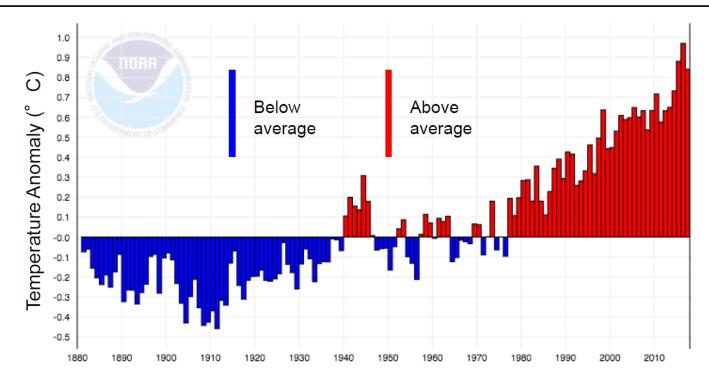


CMR Initiatives

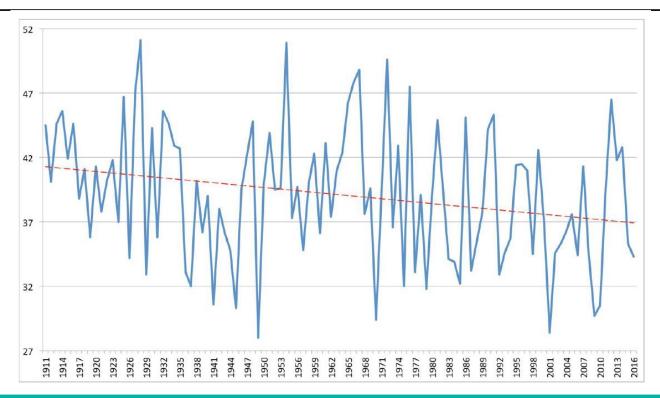
- Bearspaw Reservoir Trilateral Task force (Calgary, Rocky View, Transalta) launched in 2018
- Bow River Phosphorous Management Plan launched in 2011
- Cooperative Stormwater Management Initiative (WID, Rocky View, Chestermere, Wheatland, Strathmore, Calgary) launched in 2012
- Nose Creek Watershed Management Plan (Airdrie, Rocky View, Calgary, YYC, Crossfield)
 ongoing
- Elbow River Watershed Partnership
- WID receives stormwater but also supplies water to >400 farms and >12,000 people

Stormwater Reuse Can Be Integrated Into Water Supply: Highway 8 Model

City of Calgary Stormwater Pond Dale Hodges Park

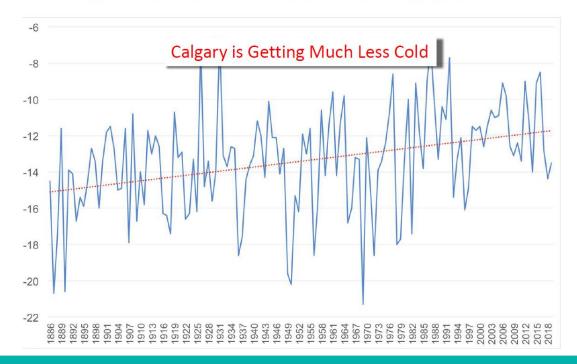

But Climate Change, Drought Cycles and Saline Runoff are Causing Problems

- Climate change means:
 - *warmer-drier winters and cooler-wetter summers*
 - more severe droughts with potential for multi-year droughts
 - Last 4 years have been drier than average
- Highly saline watering combine with less rainfall have contributed to spruce tree mortality in Calgary region


April 2019 Was 412th Consecutive Month with Temperature Above 20th Century Average

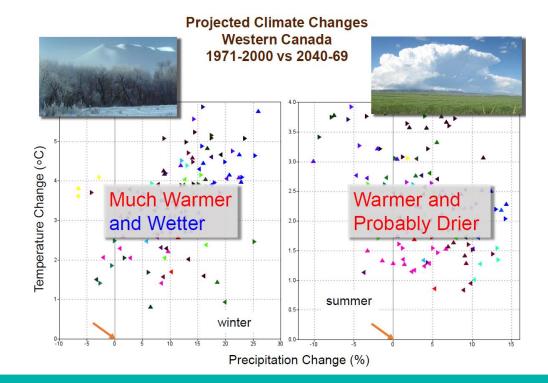
www.ncdc.noaa.gov/sotc/global/201801

Less Water in the Bow River Headwaters: Average Annual Flow at Banff m³/sec

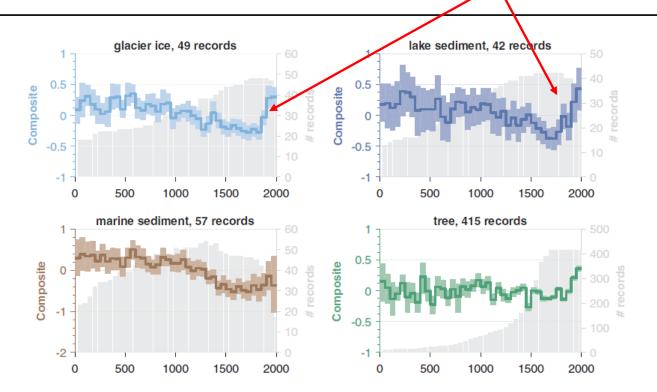


(Sauchyn, 2019)

Milder Winters Affect Soil Moisture


Average Minimum Winter Temperature (°C) at Calgary, 1886 to 2019

Sauchyn, 2019


We likely won't get the precipitation when we need it

Sauchyn, 2019

Global Warming Over Past 2000 years: Sharp Increase Last Century

PAGES2k Consortium 2017

Typical Stormwater Quality in December in Calgary

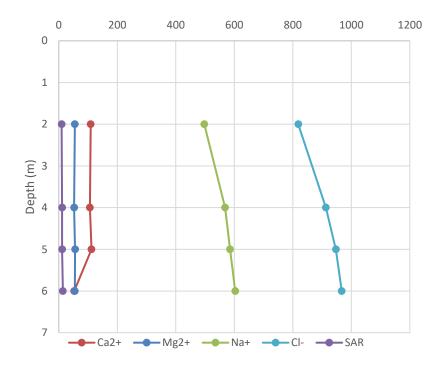
- *pH* = 7.49
- *Hardness* = 466.78
- EC 2.52 mmhos/cm
- Soluble salts = 1609.6 ppm
- Chloride = 521 ppm
- SAR = 16.52 (Alberta Agriculture recommends 4 to 9 as limits for crops)

UofC Research Study

- 1. Determine suitability of stormwater quality produced through snowmelt and rainfall events for irrigation from February through April 2020.
- 2. Tested at variety of locations: stormwater inflow, forebay pond and storage pond.
- 3. Develop a real-time method for in-situ analysis of stormwater qualityn an ongoing basis
- 4. In-situ analysis using probe YSI ProComm II for electrical conductivity (EC), pH, temperature and dissolved oxygen (DO)
- 5. Laboratory measurements of TDS, total suspended solids and orthophosphate (PO_4^{3-})
- 6. Researcher = Satyam Arya (Chemical Engineering Student UofC. Advisor = Dr. Roya Pishgar, Postdoctoral Research Student University of Calgary. Supervisor = Dr. Angus Chu, Professor Civil Engineering

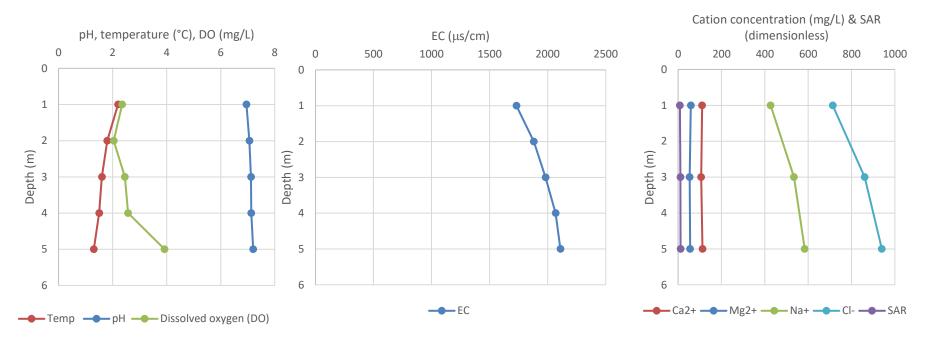
Typical Water Quality – January 2020

- Dissolved Oxygen = 6.6 mg/l (a level of below 5.0 can stress fish whereas a level below 1-2 mg/l can kill fish)
- pH = 8.2 (normal pH for irrigation water is between 6.5 and 8.4)
- Electrical Conductivity = 1652 micro-siemens per cm (1.65 mhos/cm = 1060 mg/I TDS)

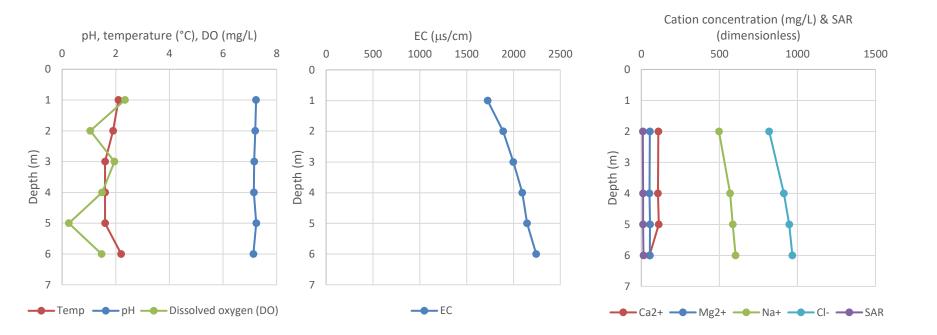


Highlights of February 2020 Sampling

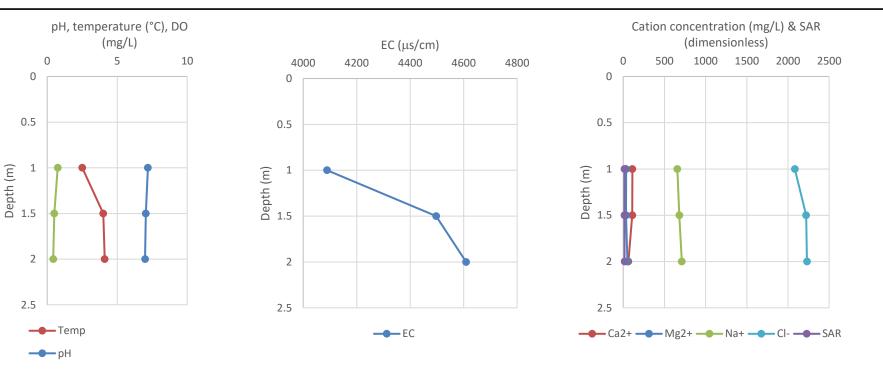
- Incoming EC = 3100 μs/cm vs 4400 μs/cm @ forebay pond and 2100 μs/cm @ storage pond
- SAR is measure of Sodium relative to Calcium and Magnesium: high Sodium disperses clay while Calcium and Magnesium promote flocculation
- SAR @ in forebay pond = 8.2 to 16.2
- SAR @ storage pond = 8 to 11
- Alberta Agriculture recommends SAR between 4 9
- Salt concentration higher in forebay pond: warmer with more evaporation losses and precipitation of salts?



Chloride Levels: Forebay Pond Elevated With Depth

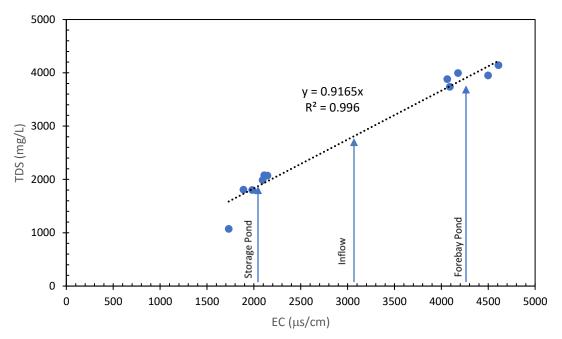


Storage Pond Water Quality



Storage Pond: SAR 8 to 11

Storage Pond: SAR 8.2 to 16.2



Dissolved oxygen (DO)

Correlation Between Conductivity and TDS = 0.9165

Ec vs. TDS

Stormwater Water Quality During Precipitation Events

Date	24-hour precipitation (mm)	TDS (mg/L)
May 4	10.6	741
8	1.6	391
21	33.3	160
31 @ 08:57 hrs	41	500
31 @ 19:11 hrs	41	228
June 7 12:00 hrs	10	220

May 2020 Water Quality Profiles in Storage Pond

Location	1	2	3	4	5	6	7	8	9	10
0.1 m	514	511	521	468	474	472	490	487	488	511
1 m	509	513	514	472	533	487	550	550	505	512
2 m	529	519	517	503	639			538	530	527
3 m	1,596	1,426	1,457	1,422	1556				1,435	1,585
4 m	1,601	1,433	1,461	1,431						
5 m	1,332		1,444							

2020 Forebay Water Laboratory Sample Results

Parameter	Alberta Irrigation Water Quality Target	March 6	April 20
Hardness		406	217
Total Soluble Salts ppm	TDS 500 to 3,500 mg/L	3,727	1,455
Sodium ppm		1,054	358
Chloride ppm	100 to 700 mg/L	1,060	550
SAR	5	50.38	19.95

- TDS > 7,000 mg/L during mid-winter melt
- >20 mm rain events flush forebay and storage ponds with lower TDS water
- Pond salt levels are stratified: fresh water decants into outfall leaving high salt level behind
- Spring freshets "float" over denser saline water rather than mix

Implications for Design

- Traditional design of stormwater storage focuses on suspended solids
- Dissolved solids, especially from road salt runoff must factor into design
- Design solutions:
 - Aggressive management of mid-winter runoff
 - Configure ponds to minimize high-salinity volume and capture more freshet
 - Design of decant systems to retain freshet and shed high-salinity water from stratified ponds
 - Integration with naturalized landscapes

For more information:

Bill Berzins +1.403.807.2782 bill.berzins@westx.com

